行列式等于0 线性无关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:45:00
设A的列向量组为a1,a2,...,an矩阵A的行列式|A|=0AX=0有非零解存在不全为0的一组数x1,x2,...,xn使得x1a1+x2a2+...+xnan=0a1,a2,...,an线性相关
对,矩阵秩的值等于列向量线性无关的个数,也等于行向量线性无关的个数,还等于非零子行列式的最大阶数.
考虑反证法.假设线性相关,即存在一向量a,可以用其他向量线性表示,根据秩的定义,推导向量组的秩必小于向量组个数
设r1B+r2a2+r3a3=0B=k1a1+k2a2+k3a3所以r1k1a1+(r1k2+r2)a2+(r1k3+r3)a3=0因为a1,a2,a3线性无关所以r1k1=0,r1k2+r2=0,r
k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a
设系数矩阵A=(a1,a2,...,an)则增广矩阵(A,b)=(a1,a2,...,an,b)再设ai1,...,air是A的列向量组a1,a2,...,an的一个极大无关组.由已知r(A)=r(A
向量组a1,...,as相关齐次线性方程组x1a1+...+xsas=0有非零解.当向量个数等维数时齐次线性方程组x1a1+...+xsas=0有非零解系数行列式|a1,...,as|=0(否则,由C
若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵
对,行列式为0的必要条件是行列式中向量线性相关,所以,在不满秩=奇异=不可逆再问:也就是可逆矩阵=非奇异矩阵=满秩矩阵==也就是线性无关矩阵,对吧谢谢再答:没错
这个结论是一个比较明显的结论,可以直接去用,不过证起来其实挺麻烦.首先X=0是方程组的解,这个是显然的,下面来证X=0是唯一解分三种情况:1、若A为方阵,这个比较简单,由于列向量组线性无关,因此A可逆
行列式|A|=0时齐次线性方程组AX=0有非零解非齐次线性方程组AX=b才是有无数个解或无解
直接用定义证明c_0ξ+c_1σ(ξ)+...+c_{m-1}σ^{m-1}(ξ)=0(*)对(*)两边作用V^{m-1}得c_0=0对(*)两边作用V^{m-2}得c_1=0...
齐次线性方程AX=0(1)可以看做关于A(m*n)的列向量a1,a2,……,an的方程ajxj=0(j=1,2,……,n)(2)列向量aj=(a1j,a2j,……,amj)^T(1)和(2)是同解方程
不等于0,说明齐次线性方程组只有零解,说明只有全为零的数才能使得他们的线性组合等于0,因此线性无关
n个n维向量线性无关,说明这n个n维向量的秩为n(n个极大线性无关组)既然满秩,那就意味着对应行列式为0!
特征向量线性无关可以推出A有三个不同的特征值所以有det(A)≠0det(λE-A)=0有三个解再问:我想要详细一点的过程,就是自己老是划不出来才来问的再答: 特征向量线性无关可以推出A有三个不同的
这道题好玩.因为0一定是A的特征值,也就是说B是对的.那么D说“以上三个选项都不正确”,肯定是错了.感觉上A=0也是对的.而A不一定有三个线性无关的特征向量.比如说如果A就是2阶的零矩阵,那么只有两个