计算∫∫e的x² y²dxdy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:54:28
计算∫∫E(x^2+y^2)dxdy E为x^2+y^2≤1,z=0的下侧

因是x^2+y^2≤1,z=0的下侧,∫∫E(x^2+y^2)dxdy=-∫∫D(x^2+y^2)dxdy,其中D:x^2+y^2≤1,用极坐标得:∫∫E(x^2+y^2)dxdy=-∫∫D(x^2+

计算二重积分:∫∫D ln(x^2+y^2)dxdy,其中D为e^2≤x^2+y^2≤e^4

{x=rcosθ、y=rsinθe²≤x²+y²≤e⁴→e²≤r²≤e⁴→e≤r≤e²∫∫_[D]ln(x²

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分:∫∫(a-√(x^2+y^2))dxdy,D的范围:x^2+y^20

用几何法,就是求半球的体积πA^2/2就可以了再问:关键就是不知道怎么求啦,嘿嘿,大大,过程也给我写下嘛您QQ多少,我想当面请教下咯再答:你看清楚这道题的几何意义就是求半径为a的上半球

利用高斯公式的方法计算积分∫∫(x+y)dydz+(y+z)dzdx+(z+x)dxdy,

根据高斯公式可得∫∫(x+y)dydz+(y+z)dzdx+(z+x)dxdy=∫∫∫dxdydz+dydzdx+dzdxdy=3∫∫∫dxdydz=3{∑围成的体积}=3pai*a^2,

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分

原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^

计算二重积分 ∫∫cos(x+y)dxdy D={(x,y)|0

∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x

计算∫∫D|cos(x+y)|dxdy,D:0

记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y

∫∫e^(x+y)dxdy,积分区域为x=0,y=0,x+y=1所围成的区域

∫∫e^(x+y)dxdy=∫[0,1]dx∫[0,1-x]e^x*e^ydy=∫[0,1]e^xdx∫[0,1-x]e^ydy=∫[0,1]e^xdx(e^y|[0,1-x])=∫[0,1]e^x(

计算lim(r->0)[1/∏r²]∫∫e^(x²-y²)cos(x+y)dxdy,其中D

lim(r->0)[1/πr²]∫∫e^(x²-y²)cos(x+y)dxdy,其中D为x²+y²≤r²由积分中值定理,在D内存在点(a,b

∫∫e^(x^2 + y^2)cos(x+y)dxdy

因为这题重点根本就不是求这个积分,而是求极限例如这是根据我以前做过的题目而推断的.若只是求这个积分的话,原函数不能用初等函数表示出.

计算∫∫e∧(x∧2+y∧2)dxdy其中D是由x轴及y=√4-x∧2所围成的闭区域.

极坐标转换:∫∫e^(x²+y²)dxdyD=∫(0,π)∫(0,2)re^(r²)drdθ=(1/2)[θ]|(0,π)[e^(r²)]|(0,2)=(π/2

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

计算∫∫e^(-y^2)dxdy 其中D是由y=x,y=1及y轴所围成的区域

先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-

计算二重积分∫∫e^(x+y)dxdy,其中区域D是由X=0,x=1,y=0,y=1所围成的矩形 (D在∫∫下面,打不出

∫∫e^(x+y)dxdy=∫[∫e^(x+y)dx]dy∫e^(x+y)dx(0~1)↑↑=e^(x+y)|0~10~10~1=e^(1+y)-e^y=(e-1)e^y=∫(e-1)e^ydy(0~

二重积分的计算 题目是求∫∫(e的y/x次方)dxdy 其中D是由曲线y=x^2直线y=x以及x=1/2围成的区域

∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2