计算二类曲线积分I=(3x y)dx-(x-y)dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:01:30
不知道对不对...
1、证:P=2xy-y⁴+3,Q=x²-4xy³∂P/∂y=2x-4y³,∂Q/∂x=2x-4y³由
简单的很,因为是曲线积分,所以可以将曲线方程带入化简积分函数,带入后可以把积分函数中3x^2+4y^2一项消去,得到了∫L(12+2xy)ds吧?因为由曲线方程同时乘以12得到的积分函数中的一项……对
4a吧?简单的,就是把曲线方程带入就可以了,那么就变成了=∮c(3xy+4)ds吧?但是曲线是关于x和y轴对称的啊,而被积函数是关于x和y的奇函数吧?所以∮c(3xy)ds积分为零,就是4倍周长了吧?
由于∂P/∂y=∂Q/∂x,因此积分与路径无关,重新选择积分路线L1:从O(0,0)到B(π,0),y=0,x:0→πL2:从B(π,0)到A(π,2)
xy′2是什么意思
虽说结果与路径无关,但是怎么知道起点与终点的位置如何?如果透过格林公式的结果是0,用参数方程的结果又是0,那又如何解释呢?那只有起点和终点的位置都一样,重合了.起点无论从曲线哪处开始也好,都绕曲线正向
用格林公式啊,发现积分与路径无关,然后你就找一条最好简单的路径,比如(0,0)到(1,0)到(1,1),来算,最后1/3+1/5=8/15
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
F(x,y)=x/y+c的偏微分就是dx/y-x/y2dy;所以求积分就是求F(-1,2)-F(1,1)=(-1/2+c)-(1/1+c)=-3/2
用格林公式∫s2dxdy2*4=8
∫(x²-2xy)dx+(y²-2xy)dy=∫[-1→1](x²-2x*x²+(x^4-2x*x²)*2x)dx=∫[-1→1](x²-2
答案:2.过程不详述了.这个积分是跟路径无关的,因为原函数是一个函数(3xxyy-xyyy)的全微分.在这种情况下,积分值等于原函数在起始点值的差.
由题意,取点D(2,1),连接线段BD和DA补充,得I=AO+0B+BD+DA(12xy+ey)dx−(cosy−xey)dy-BD+DA(12xy+ey)dx−(cosy−xey)dy=∫∫D(−1
原积分=∫(0到1)(1+y^2)dy+∫(1到0)(x^3+x)dx+∫(1到0)y^2dy+∫(0到1)x^3dx=4/3-3/4-1/3+1/4=1/2.
看高等数学!
计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy其中L是在抛物线2x=πy^2上由点(0,0)到(π/2,1)的一段弧.———————————————