计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0
计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0
计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2
计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是
计算曲线积分∫L(3xy+sinx)dx+(x2-yey)dy,其中L是曲线y=x2-2x上以O(0,0)为起点,A(4
计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿
计算曲线积分∫L(sin2x+xy)dx+2(x^2-y^2)dy,其中L是曲线y=sinx上从(π,0)到(2π,0)
计算曲线积分I=∫L(y^3*e^x-2y)dx+(3y^2*e^x-2)dy,其中曲线L是从原点O(0,0)到点A(2
∮L(2xy-x^2)dx+(x+y^2)dy,其中L是由抛物线y=x^2和x=y^2所围成的区域的正向边界曲线
计算曲线积分∫L (x^2+2xy)dx+(x^2+y^4)dy,其中L为点(0,0)到点(1,1)的曲线弧y=sin(
证明:曲线积分∫L(2xy-y^4+3)dx+(x^2-4xy^3)dy在xoy平面内与路径无关,并计算积分值,其中L为
曲线积分问题(2xy-x^2)dx+(x+y)^2dy对于L的曲线积分,其中L是关于抛物线y=x^2和y^2=x所围成的
利用格林公式计算∫L (2xy-x^2)dx+(x+y)^2dy,其中L是由抛物线 所围成的区域的正向边界曲线.