n阶矩阵A满足A^2-3A 2I=0,则A-EI可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:03:22
设n阶矩阵A满足A^2+A-3i=0 证明矩阵A-2I可逆,并求(A-2i )^-1

注:i应该写成大写的I,但看起来象1,也可以记为E.因为A^2+A-3E=0所以A(A-2E)+3(A-2E)+3E=0即有(A+3E)(A-2E)=-3E.所以A-2E可逆,且(A-2E)^-1=(

设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.

因A^3+2A-3E=0变形A^3+2A=3E即A[1/3(A^2+2E)]=E也就是存在B=1/3(A^2+2E)使得AB=BA=E按定义知A可逆且逆矩阵A^(-1)=1/3(A^2+2E)

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

两边同时减5i得A^2-2A-3i=-5i(a-3i)(a+i)=-5i(-1/5(a+i))(a-3i)=i所以a-3i的逆矩阵是-1/5(a+i)因为有逆矩阵所以可逆

求N阶矩阵A满足A方+A-3E=0,证明:A和A+2E都可逆,并求出他们的逆矩阵.

证A可逆A²+A-3E=0A(A+E)=3EA(A+E)/3=E所以A可逆,且A的逆矩阵为(A+E)/3证A+2E可逆A²+A-3E=0(A+2E)(A-E)=E所以A+2E可逆,

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

A^2-2A+2I=0A^2-3A+A-3I=-5IA(A-3I)+(A-3I)=-5I(A+I)(A-3I)=-5I[-1/5(A+I)](A-3I)=I因此-1/5(A+I)是A-3I的逆矩阵因此

已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)

因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

n阶矩阵A满足A^2+2A+3E 证明A+E可逆 并求逆

可以改写等式得出逆矩阵.请采纳,谢谢!

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵

因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A

线性代数:若n阶矩阵A满足方程A^2 2A 3E=0,则(A)^-1=?

A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

若N阶矩阵A满足A^2-2A-3I=0,则矩阵A可逆,且A^-1=____

A^2-2A-3I=0即A(A-2I)=3I即A*(A-2I)/3=I,所以选D再问:第一步提了个A出来威慑么2后面会有个I?再答:因为这是矩阵相乘2A=2A*I,任何矩阵与单位矩阵的乘积不变.再问:

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

n阶矩阵A满足A^2=A,求A的特征值?

这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.