设(X1,X2, X11)是来自X-N(-1,4)的样本,求P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:21:49
U(-1,1) -->f(x) = 1/2 for -1 < x < 1;&nb
因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n
为了减化记号,用X,Y替代X1,X2.X,Y为服从N(0,s²)的独立随机变量,二者的联合分布密度函数f(x,y)=e^(-(x²+y²)/(2s²))/(2π
所求数学期望与X~N(0,1)的数学期望相同,为0.
自由度肯定是2,就是可以转化成两个标准正太分布的平方之和,a,b都是来让后边的两个分布都等于标准正太分布的.再问:我自己已经做出来了,不过分还是给你好了……
均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是
服从~N(u,σ^2/n)正态分布
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+
E(X1-X2+X3-X4)=0D(X1-X2+X3-X4)=4D(X)=4χ²(1)D(√c(X1-X2+X3-X4))=c4=1c=1/4如有意见,欢迎讨论,共同学习;如有帮助,
行列式展开=x1^3+x2^3+x3^3-3x1x2x3而x1^3+x2^3+x3^3-3x1x2x3=(x1+x2+x3)(x1^2+x2^2+x3^2-x1x2-x2x3-x3x1)(展开右边即得
1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C
解题思路:利用一元二次方程根与系数的关系求解。解题过程:最终答案:略
期望值和方差均求和即可,因为这个X1+X2+X3是线性的关系.再问:我想知道是怎么算的?谢谢!再答:E(X+Y)=E(X)+E(Y)方差=E[(X+Y)²]-[E(X+Y)]²=E
x1.x2是方程2x²-x-3=0的两实根∴x1+x2=1/2x1x2=-3/2∴x1+x2+x1*x2=1/2-3/2=-1
函数f(x)=x2+aln(x+1)+1/2ln2的定义域为(-1,+∞)(1)f‘(x)=2x+[a/(x+1)]=(2x^2+2x+a)/(x+1)=[2(x+1/2)^2+a-1/2]/(x+1
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n
根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√
你弄反了递减的话,是:f(x1)-f(x2)>0因为x1-x2