设a1,a2,a3线性相关,则t应满足
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:21:21
存在一组不全为0的数1,1,1使得1(a1-a2)+1(a2-a3)+1(a3-a1)=0
应该选C的因为向量组a1,a2,a3,a4,a5线性相关又因为向量组a2,a3,a4,a5线性无关所以向量a1可由向量组a2,a3,a4,a5线性表示因为向量组a2,a3,a4,a5线性无关所以向量组
3个3维向量线性相关的充分必要条件是它们构成的行列式等于0因为a1a2a3线性相关且|a1,a2,a3|=7k-7所以k=1.
说明向量组a1,a2,a3,a4线性相关;即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(注由于这里不好写下标,在此声明k1,k2,k3,k4为系数
(1)向量组a2,a3,a4线性无关,说明a2,a3,也线性无关;又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a
说明向量组a1,a2,a3,a4线性相关;即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(注由于这里不好写下标,在此声明k1,k2,k3,k4为系数
这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:
证明:因为(a1+a2,a2+a3,a3+a1)=(a1,a2,a3)KK=101110011而|K|=2≠0,即K可逆.所以r(a1+a2,a2+a3,a3+a1)=r[(a1,a2,a3)K]=r
1+b2+b3=0这就可以说明b1,b2,b3是线性相关的
C注:A可以线性相关,只要a1,a2线性无关就行Ba1a4线性相关跟这四个向量线性无关没关系D前后正负关系,肯定线性相关D注:秩为2所以A可以先向相关,跟a3线性相关都可以,只要跟a4别线性相关.B不
楼上厉害,直接看出了它们的线性关系我给一个看不出来的一般证法.证明:因为(a1+2a3,a2-a3,a1+2a2)=(a1,a2,a3)K其中K=1010122-10因为a1,a2,a3线性无关,所以
经典老题因为(a1+a2)-(a2+a3)+(a3+a4)-(a4+a1)=0所以a1+a2,a2+a3,a3+a4,a4+a1线性相关.再问:这是我明天的考试题目~拜托您讲得清楚点么~~~再答:这是
a1、a2、a3线性无关,它们之间不能相互线性表示;a2、a3、a4线性相关,它们之间可以相互线性表示;选B呗,反例;a2能被a3、a4线性表示,再加一项系数为零的a1
线性无关.反证法.假设mb1+nb2+rb3=0,则ma1+n(a1+a2)+r(a1+a2+a3)=0;则(m+n+r)a1+(n+r)a2+(r)a3=0,与向量组a1,a2,a3线性无关矛盾.故
(b1,b2,b3)=(a1,a2,a3)A.其中A=1022200a3因为a1,a2,a3线性无关,b1,b2,b3线性相关,故|A|=0.得6+4a=0,所以a=-3/2#注:由b1,b2,b3线
证明:因为向量组a1+a2,a2+a3,a1+a3可由a1,a2,a3线性表示所以r(a1+a2,a2+a3,a1+a3)
若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2(线性相关,)
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B