设A^2=E,证明它的特征值只能是1或-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/09 00:59:56
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设N阶方阵A的特征值为λ,证明:2A+E(E为n阶单位阵)的特征值为2λ+1

设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值

设N阶矩阵A满足A平方=E 证明A的特征值只能是正负1

设AX=λX,则λ是A的特征值(A^2)X=A(AX)=A(λX)=λ(AX)=λ^2X而A^2=E所以EX=λ^2X即λ^2是单位矩阵E的特征值,而单位矩阵的特征值全为1所以λ^2=1所以λ=正负1

设方阵A有一个特征值λ=2,试证明:方阵B=A^2-A+2E有一个特征值为4.

有个定理,B的特征值为λ^2-λ+2=4再问:什么定理?可以写详细点吗?再答:首先把A做变换得到若当标准型A=RTCRR为正交阵,RT为其转置,C叫啥忘了,由若当块组成,A的特征值就在C对角线上。B=

设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

设A是三阶矩阵,它的特征值是-1,1,4,若A+B=2E,求矩阵B的特征值.E+A^-1的特征值与A^-1一样吗?

A的特征值是-1,1,4所以B=2E-A的特征值是(2-λ):3,1,-2.E+A^-1与A^-1的特征值不同若a是A^-1的特征值,则a+1是E+A^-1的特征值

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2

设A的特征值是a,则a^2-3a+2是A^2-3A+2E的特征值.由已知A^2-3A+2E=0,而零矩阵的特征值只能是零,所以a^2-3a+2=0,即(a-1)(a-2)=0.所以a=1或a=2.即A

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值

因为AAT=E,所以A为正交矩阵,且|A|再问:直接把A提出来,|AB|=|A||B|

线性代数问题:设A为正交阵,即A^T A=E,且|A|=-1,证明-1为A的特征值?

设A的转置为A'有|E+A|=|A'A+A|=|A||A'+E|=-|(A+E)'|=-|E+A|所以|E+A|=0就是说|A-(-E)|=0这就说明-1是他的一个特征根

矩阵的特征值证明设A为正交阵,B为A的转置阵,即BA=E,且A的行列式为-1证明-1为A的特征值.请写出证明过程

这个问题我回答过好几次了,你在百度上随便搜搜应该就有.证法1:det(I+A)=det(A'A+A)=det(I+A')det(A)=-det(I+A),从而等于0.证法2:A的特征值模长都是1,且虚

矩阵A^2=E,且有不同的特征值,不同特征值的特征向量正交,证明A为正交阵

A的特征值只能是1或-1,注意到(A+E)(E-A)=0,线代数上应该证明此时有r(A+E)+r(A-E)=n,也就是Ax=x的解空间和Ax=-x的解空间维数之和是n.在Ax=x中取标准正交向量组q1

设n阶矩阵A满足A的2次方=E,证明A的特征值只能是正负1

Aa=ra,a不为0向量,r为特征根.a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a=>r^2=1,r=1or-1.

设n阶方阵A满足A^2+2A-3E=0证明A+4E的特征值都不是零.

因为A^2+2A-3E=0所以如果m_A(x)是矩阵A的最小多项式,定有m_A(x)|(x^2+2x-3)所以A得特征值只可能是x^2+2x-3的根1或者-3.所以|A+4E|≠0即A+4E的特征值都

设m阶矩阵A满足A的平方 =A,证明:(1)A的特征值只能是1或0;(2)A+E

(1)设a是A的特征值则a^2-a是A^2-A的特征值而A^2-A=0,零矩阵的特征值只能是0所以a^2-a=0所以a=1或0即A的特征值只能是1或0(2)由上知,A+E的特征值只能是2或1

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

设n阶矩阵A不等于E,如果r(A+E)+r(A-E)=n,证明,-1是A的特征值

只需证明r(A+E)=n,则r(A+E)=n,于是由条件r(A--E)=0,故只有A--E=0,A=E.矛盾.

设A为n阶方阵,且A的平方=E,证明:(1)A的特征值只能是1或-1 ;(2)3E-A可逆

(1)设λ是A的特征值则λ^2-1是A^2-E的特征值而A^2-E=0所以λ^2-1=0所以λ=1或-1.故A的特征值只能是1或-1.(2)由A^2=E得A(A-3E)+3(A-3E)=-8E所以(A