设a为3阶方阵 且|A|=a≠0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:03:32
设A为三阶方阵,且|A|=-3,求|-3A|

|-3A|=(-3)^3*|A|=(-3)^4=81

线性代数:设A为n级方阵,且|A|=2求|-3A|

|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

设A为3阶方阵,则A为可逆阵当且仅当R(A)=?

A为可逆阵,则它为满秩.因为A为3阶.所以R(A)=3;

设A为3阶方阵,且|A^-1|=2/5,则|(2A)^-1-A^*|=

昨天在的怎么没收到你这个问题A*=|A|A^-1=5/2A^-1|(2A)^-1-A*|=|1/2A^-1-5/2A^-1|=|-2A^-1|=(-2)^3|A^-1|=-8*2/5=-16/5.

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A是n阶方阵,且|5A+3E|=0.则A必有一个特征值为

因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设A为三阶方阵,且|A|=2,A*为A的伴随矩阵,|3A*|=?

A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵

设 /A/为三阶方阵,且已知/A/=-2 ,则/3A /的值为多少

3A是在每个矩阵元素上乘以3,这样在计算行列式时,由于每个元素是原来的3倍,所以一个n阶方阵的行列式的值变为原来的3^n倍.在本题中,n=3,所以/3A/=3^3*(-2)=-18说的详细点,行列式是

设A 为三阶方阵且|A|=-2,则|3A²|=?

因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.

设A为三阶方阵,且|A+E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=?

左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设A为三阶方阵,且|A|=-2,求|-2A|

|-2A|=(-2)^3*|A|=(-2)^4=16