设a为n阶正交矩阵证明Aa=a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:49:30
证明n阶方阵A为正交矩阵的充要条件是对任意n维列向量a都有|Aa|=|a|

充分性:如果A=βα,那么r(A)再问:不懂,怎么和秩联系了呢再答:采纳我,我加你qq再问:不理解再答:我加你qq,现在把我选为满意答案,谢谢

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设A.B为n阶正交矩阵,n为奇数,证明|(A-B)(A+B)|=0.

利用行列式性质:|AB|=|A||B|,及|A‘|=|A|.|(A-B)(A+B)|=|(A-B)||(A+B)|=|(A-B)'|*|(A+B)|=|(A'-B')||(A+B)|=|(A'-B')

设a是n维列向量,A为n阶正交矩阵,证明||Aa||=|a|

证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。

线性代数:n阶方阵A为正交矩阵,证明A*为正交矩阵

因为n阶方阵A为正交矩阵,故A'A=E,得A^-1=A'可逆!且IA'AI=IA'IIAI=IAI^2=IEI=1.A^-1=A*/IAIA*=IAIA^-1=IAIA'故(A*)'A*=(IAIA'

设AB为n阶正交矩阵且|A||B|=-1 证明|A+B|=0

由于A,B为正交矩镇,AA^T=E,BB^T=E因此A^T(A+B)B^T=B^T+A^T=(A+B)^T所以|A^T(A+B)B^T|=|(A+B)^T|=|A+B|即|A^T||(A+B)||B^

线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零

|A(A^T-E^T)|=|A||A^T-E^T|=|A||(A-E)^T|=|A||A-E|注:知识点|A^T|=|A|.

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

设A为n阶正交矩阵;a,b为两个n维的向量,求证1.(Aa,Ab)=(a,b) 2.||Aa||=||A||

(Aa,Ab)=(Aa)^T(Ab)=a^TA^TAb=a^Tb=(a,b)由上知(Aa,Aa)=(a,a)所以||Aa||=√(Aa,Aa)=√(a,a)=||a||.

设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]

因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]

设A为可逆n阶方阵,证明存在正交矩阵P,Q使得PAQ为对角矩阵

这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··

设A为n阶矩阵,证明A为正交阵的充分必要条件是A*为正交阵

A为正交阵当且仅当A的逆为正交阵(这个结论应该都讲过,不用证了吧……要证的话也很简单),A*=|A|乘以A的逆,得证.

设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵

AA^T=A^TA=E,A^(-1)=A^T|A|^2=1,|A|=1.-1A*=|A|A^(-1)=A^T或者-A^TA*=A^T时,A*(A*)^T=A^T(A^T)^T=A^TA=EA*=-A^

正交矩阵的性质A是n阶正交矩阵,证明A*也是正交矩阵结果如下:由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵

|A|表示A的行列式,行列式是能计算出来的,是一个具体的数哦,所以这里|A|是当一个常数一样得提出来做乘积,当然不需要做转置.

设a,b属于Rn,A为正交矩阵,证明:1:|Aa|=|a|; 2:=.

=(Aa)^TAa=a^T(A^TA)a=a^Ta=故1成立.2,应该为=.根据1,考虑=分别展开,对比可得2.

线性代数问题 设a为n维列向量,且a∧Ta=1,矩阵A=E-2aa∧T,证明A是正交

a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa

设A为正交矩阵,证明|A|=±1

由A为正交矩阵的定义,有A^T*A=E两边取行列式,有|A^T*A|=|A^T|*|A|=|E|即|A|^2=1,|A|=±1