设A是m*n 矩阵,r(A)=r,则Ax=0的解空间维数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:56:39
设A是m*n实矩阵,若r(ATA)=5,则r(A)=

(A)=5因为r(ATA)=r(A)证明如下:若ATAx=0则xTATAx=0则(Ax)TAx=0就是说Ax这个向量的内积是0从而这个向量是0即Ax=0这说明r(A)=r(ATA)综合上述两方面R(A

设A是m*n矩阵,B是n*s矩阵,证明秩r(AB)

AB的列向量可由A的列向量线性表示所以r(AB)

设矩阵Am*n的秩R(A)=m

正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)

设A为m*n矩阵,P是m阶可逆矩阵,Q是n阶可逆矩阵,证明:r(A)=r(PA)=r(AQ)=r(PAQ)

教科书中应该有这样的两个结论:1.初等变换不改变矩阵的秩2.可逆矩阵可以表示成初等矩阵的乘积由P,Q可逆,所以它们可以表示成初等矩阵的乘积所以PA相当于对A做若干初等行变换,它的秩不变,即仍是A的秩同

设A为m×n实矩阵,证明r(A^T A)=r(A)

方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX

设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)

设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

设A是m*n矩阵,B是n*m矩阵,证明:若r(A)=n,则r(AB)=r(B).

如果r(A)=n结合r(A)=n此外,又知道r(B)

设A是m×n的矩阵,B是n×p的矩阵,证明:若R(A)=n,R(AB)=R(B)

因为R(A)=n那么取A中n行构成A的基CC的大小是n*n设R(B)=y同理取B的基DD的大小是n*y因为R(C*D)=R(D)=R(B);所以R(AB)=R(B);

设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC

题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.

设A是m*n实矩阵,证明:R(A'A)=R(AA')=R(A)

这类问题可用证明齐次线性方程组同解的方法显然,AX=0的解都是A'AX=0的解.反之,若X1是A'AX=0的解则A'AX1=0所以X1'A'AX1=0故(AX1)'(AX1)=0所以有AX1=0即A'

考研数学三:线性代数矩阵和秩的问题 设A是m*n矩阵,r(A)=m

这个就可以当公式来用,如果非要证明的话,如下:r(At*A)≤min(r(At),r(A)),而r(A)=r(At),所以r(At*A)=r(A)

设A是m*n矩阵,且R(A)=r,则当r=m,r=n,m=n,r

=m,r=n,m=n,r再问:这是一道选择题,我想问分别当r=m,r=n,m=n,

设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r

证:将B按列分块为B=(b1,...,bs)因为AB=0所以A(b1,...,bs)=(Ab1,...,Abs)=0所以Abi=0,i=1,...,s即B的列向量都是齐次线性方程组AX=0的解向量所以

设A是m*n矩阵,B是n*s矩阵,满足AB=0,且A,B均为非零矩阵,那么r(A)+r(B)≤n,r(A)≥1,r(B)

n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较

设A是n阶实对称矩阵,证明r(A)=r(A^2)

证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^

设A是m*n实矩阵,若R=(A^TA)=5,则R(A)=?

R(A)=5.因为R(A^TA)=R(A),下面简单证明一下:任何满足Ax=0的x向量,必然满足A^TAx=0,所以R(A^TA)=R(A).所以只能有R(A^TA)=R(A).

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

线性代数:设A为m x n矩阵且秩(A)=r的充要条件是

D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.