设a是方阵A的特征值,则当A可逆时,()是A可逆的特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:49:20
λ^2+2λ+1
显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值
证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.
A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2
A^-1的特征值是A的特征值的倒数:1/3,1/2,1/4再问:这是真的吗==这么简单
A的特征值是1,0,2则A+2E的特征值是(λ+2):3,2,4所以|A+2E|=3*2*4=24再问:谢了
A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.
λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变
A的一个特征值是5A的特征值是|λE-A|=0的根,考虑方阵λE-A,他的各列元素之和是λ-5因为λE-A是把A取负再把每一列的某个元素加上一个λ.这样根据行列式的性质,通过变换:把第2至第n行各加到
题目没写全吧再问:则KA-1的特征值为,不好意思,谢谢您了再答:结果应该是2K-1过程设x是特征值2的特征向量Ax=2x则kAx=2kx则kAx-x=2kx-x即(kA-1)x=(2k-1)x所以,k
若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值A^(-1)x=[A^(-1)(cx)]/c=[A^(-1)(Ax)
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值
由于方阵A与B相似,因此A与B的特征值相同所以,B的特征值是1,12,13,而B是三阶的,因此上面三个特征值是B的全体特征值所以,B-1+E的特征值为11+1=2、112+1=3、113+1=4故:|
填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.
知识点:若a是A的特征值,g(x)是x的多项式,则g(a)是g(A)的特征值你的题目:g(x)=x^2,g(2)=2^2=4,g(A)=A^2所以4是A^2的特征值注意此类题型的扩展.
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
行列式的值等于特征值乘积0
设x是r对应的非零特征向量,则有Ax=rx,上式两边同左乘A,则AAx=rAx=rrx,由此可以得到r^2是A^2的特征值