设f(x)在0,1上可导,且满足关系式f(1)-3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:37:30
f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)
据复合函数求导法则即可得:dy/dx=f`(sin^2x)*sin(2x)-f`(cos^2x)*sin(2x)=sin(2x)*(f`(sin^2x)-f`(cos^x)).
证明:∵f(x)在[0,1]上有二阶导数∴f(x)及f'(x)在[0,1]上连续可导∴F(x)及F'(x)在[0,1]上也连续可导又f(0)=f(1)=0∴F(0)=0*f(0)=0,F(1)=f(1
很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,
f(0)f(1)
f'(x)=f(x),即dy/dx=ydy/y=dx两边积分:lny=x+C两边取e指数:y=e^x+Cf(0)=e^0+C=1C=0所以,f(x)=e^x再问:两边积分那步是怎么得来的啊?再答:∫(
做辅助函数F(x)=x²f(x),则函数F(x)在区间[0,1]上连续,在(0,1)内可导,且F'(x)=2xf(x)+x²f'(x).F(0)=0,F(1)=f(1)=0,于是由
令F(x)=f(x)-1,F(0)0,F(x)在[0,1]上可导=>连续,故至少在(0,1)内有一点ξ,使得F(ξ)=0,即f(ξ)=ξ.下面用反证法证明ξ只有一个.假设存在ξ1,ξ2∈(0,1),F
...楼上是懒得写吧,这个确实挺简单的,但写起来很麻烦废话不多说,原式=|∑[(∫(i-1/n,i/n)f(x)dx-(1/n)f(i/n)]|.(i=1,2,3,...n)利用积分中值定理∫(i-1
Taylor展式:对任意的x,f(0)=f(x)+f'(x)(0-x)+f''(c1)(0-x)^2/2,f(1)=f(x)+f'(x)(1-x)+f''(c2)(1-x)^2/2.两式相减,得f'(
∵对任意的x,f(0)=f(x)+f'(x)(0-x)f(1)=f(x)+f'(x)(1-x)两式相加得∴2f(x)=(2x-1)f'(x)即f(x)=(x-1/2)f'(x)且0≤x≤1∴l∫f(x
f‘(x)=2f(x),df(x)/f(x)=2dx解得:f(x)=Ce^(2x)由f(0)=1得:C=1f(x)=e^(2x)
g(x)=f(x)-x^3/3在[0,1/2]上对g(x)用中值定理g(1/2)-g(0)=g'(A)(1/2-0)=g(1/2)在[1/2,1]上对g(x)用中值定理g(1)-g(1/2)=g'(B
复合函数的导数F'(x)=f'(3x-1)*(3x-1)'所以F'(x)=3f'(3x-1)令x=1F'(1)=3f'(2)=9
由拉格朗日中值定理:对x属于[-1,1],存在a属于(-1,1),使:f(x)-f(0)=xf'(a)|f(x)|=|xf'(a)|
题目错了吧 应该是证明,2f(a)+af'(a)=f'(a) 如下图: 再问:我书上写的是等于0啊再答:不好意思啊,想成另一题了,重新构造一个函数即可,方
答案写得比较略,我写详细些你就容易懂了. 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
可导——连续——有界.F(x)=f(x)-x求导可知F(x)单调递减,F(-无穷)>0F(+无穷)
设F(x)=f(x)-lnx则F(1)=f(1)F(e)=f(e)-1而0