设f(x)在[0,1]上有二阶连续导数,证明:对任意的a,b,有

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:49:38
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|

f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)

设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,

F'={f'(x)(x-a)-[f(x)-f(a)]}/(x-a)^2原命题等价于证f'(x)(x-a)-[f(x)-f(a)]>=0G=f'(x)(x-a)-[f(x)-f(a)],a0a再问:帅哟

设f(x)在[0,1]上有二阶连续导数,证明:∫ (-1,2)f(x)dx=1/2[f(1)+f(2)]-1/2∫(1,

用分部积分法.∫^(0,1)x(1-x)f"(x)dx(u=x(1-x)v'=f''(x)u'=1-2xv=f'(x)=[x(1-x)f'(x)](0,1)-∫^(0,1)(1-2x)f'(x)dx再

若f(x)在〔0,1〕上有二阶导数,且f(1)=0,设F(x)=x^2f(x),证明:在(0,1

证明:∵f(x)在[0,1]上有二阶导数∴f(x)及f'(x)在[0,1]上连续可导∴F(x)及F'(x)在[0,1]上也连续可导又f(0)=f(1)=0∴F(0)=0*f(0)=0,F(1)=f(1

设函数f(x)在〔1,2〕上有二阶导数,且f(1)=f(2)=0,又F(x)=(x-1)^2f(x),那么F(x)的二阶

证明:F(x)=(x-1)²f(x),显然F(1)=F(2)=0,F(x)满足罗尔定理则存在ξ1∈(1,2),使得F'(ξ1)=0又F'(x)=2(x-1)f(x)+(x-1)²f

设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x

f'(x)=f(x),即dy/dx=ydy/y=dx两边积分:lny=x+C两边取e指数:y=e^x+Cf(0)=e^0+C=1C=0所以,f(x)=e^x再问:两边积分那步是怎么得来的啊?再答:∫(

设函数f(X)定义在(0,+∞)上,f(1)=0,导数f'(x)=1/x,g(x)=f(x)+f'(x) .

f'(x)=1/x所以f(x)=lnx+cf(1)=0c=0f(x)=lnxg(x)=lnx+1/x(x>0)g(1/x)=x-lnx(x>0)g(x)-g(1/x)=2lnx+1/x-x另F(x)=

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f'(x)=1/x,g(x)=f(x)+f'(x).

证明:假设存在x0>0,使|g(x)-g(x0)|<1/x成立,即对任意x>0,有Inx<g(x0)<Inx+2/x,(*)但对上述x0,取x1=eg(x0)时,有Inx1=g(x0),这与(*)左边

设f(x)在【0,1】上单调递增,f(0)>0,f(1)

因为f(0)>0且f(1)0,任意y若yy^2}=a属于(0,1)现在因为f单增,所以对任意x若0x^2,所以f(a)>=a^2,若f(a)>a^2,不放假定f(a)=a^2+c,(c>0).于是存在

设函数f(x)在[0,1]上可导,且0

令F(x)=f(x)-1,F(0)0,F(x)在[0,1]上可导=>连续,故至少在(0,1)内有一点ξ,使得F(ξ)=0,即f(ξ)=ξ.下面用反证法证明ξ只有一个.假设存在ξ1,ξ2∈(0,1),F

一道高数证明题,设函数f(x)在[0,1]上可导,且|f'(x)|

...楼上是懒得写吧,这个确实挺简单的,但写起来很麻烦废话不多说,原式=|∑[(∫(i-1/n,i/n)f(x)dx-(1/n)f(i/n)]|.(i=1,2,3,...n)利用积分中值定理∫(i-1

设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^

用分部积分法.∫^(0,1)x(1-x)f"(x)dx(u=x(1-x)v'=f''(x)u'=1-2xv=f'(x)=[x(1-x)f'(x)](0,1)-∫^(0,1)(1-2x)f'(x)dx再

设f(x)在[0,1]上有二阶连续导数,证明:∫(-1,2)f(x)dx=1/2[f(1)+f(2)]-1/2∫(1,2

用分部积分法.∫^(0,1)x(1-x)f"(x)dx(u=x(1-x)v'=f''(x)u'=1-2xv=f'(x)=[x(1-x)f'(x)](0,1)-∫^(0,1)(1-2x)f'(x)dx再

设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|

Taylor展式:对任意的x,f(0)=f(x)+f'(x)(0-x)+f''(c1)(0-x)^2/2,f(1)=f(x)+f'(x)(1-x)+f''(c2)(1-x)^2/2.两式相减,得f'(

设函数在[0,1]上有二阶导数,且|f''(x)|≤M,又f(x)在(0,1)内取得最大值,证明:|f'(0)|+|f'

这怎么可能呢?随便举个反例:f(x)=-x^2-10,M=2f"(x)=-2,在[0,1]内最大值为-10,而|f(0)|+|f(1)|=10+11=21>M取圆括号也不行,比如f(x)=-(x-0.

设函数f(x)定义域在(0,+∞)上,f(1)=0导函数f'(x)=1/x,g(x)=f(x)+f'(x)

暂时弄出了前两个问,不知道对不对.(1)因为f‘(x)=1/x所以f(x)=lnx+c又因为f(1)=ln1+c=0所以c=0所以g(x)=lnx+1/x令g’(x)=1/x-1/(x的平方)=0得x

设函数f(x)在闭区间[0,1]上可导,且f(0)×f(1)

题目错了吧 应该是证明,2f(a)+af'(a)=f'(a) 如下图: 再问:我书上写的是等于0啊再答:不好意思啊,想成另一题了,重新构造一个函数即可,方

设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1

令x=y=0f(0)=f(0)×f(0)f(0)不等于0,f(0)=1令y=0f(0)=f(x)×f(0)f(x)=1

设函数在[0,1]上有二阶导数,且|f''(x)|≤M,又f(x)在[0,1]内取得最大值,证明:|f(0)|+|f(1

这怎么可能呢?随便举个反例:f(x)=-x^2-10,M=2f"(x)=-2,在[0,1]内最大值为-10,而|f(0)|+|f(1)|=10+11=21>M取圆括号也不行,比如f(x)=-(x-0.

设f(x)在[1,e]上可导,且0

设F(x)=f(x)-lnx则F(1)=f(1)F(e)=f(e)-1而0