设G为9阶无向图,每个结点度数不是5就是6,则G中至少有__个5度结点.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:38:25
找规律的方法:画出度为3的树的最简单形式,计算每增加一个度为3的节点同时增加几个叶子节点可知:2n-1=leaf(n为度为3的节点数,leaf为叶子节点数)所以当n=3时,leaf=2*3-1=5
n个顶点度数为d(xi)(1≤i≤n)则d(xi)可以取0,1,2...,n-1可以取n个不同的值若存在d(xi)=0则不可能存在d(xi)=nn个d(xi)取n-1个不同的值由鸽笼原理必有d(xm)
难题?你可能不知道基本定义吧.d(v1)=3,d(v2)=4,d(v3)=3,d(v4)=3,d(v5)=1,d(v6)=0,奇结点4个,偶结点2个.过程就是数出来的,把G画出来就能说明了.
不正确.理由:根据平面图的必要条件为3v-6>=e,其中v为节点数,e为边数.代入数据,可得15>=16,可知不是平面图.【注意】3v-6>=e是必要条件,不是充分条件,也就是说不满足该公式就不是平面
用扩大路径法,随意选取一个点,每需和其他一个点连接需要至少一条边,因为他是连通图,所以至少有N-1条边,只有N-1条边的时候每条边都是桥所以可知他就是一棵树
答:结点数v与边数e满足e=v-1,关系的无向连通图就是树
若结点v是连通图G=的一个割点,设删去v得到子图G',则G'至少包含2个连通分支.设其为G1=,G2=,任取u∈V1,w∈V2,因为G是连通的,故在G中必有一条连接u和w的路C,但u和w在G'中属于两
对m用归纳法.再问:如何归纳?再答:当m=1时,图G有两种结构,一种是有两个顶点和一条关联这两个顶点的边构成,显然m=1,n=2.结论成立。另一种是由一条自回路构成,显然m=1,n=1.结论成立。假设
设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边
设节点数是n,则由握手定理,1×6+2×1+3×1+4(n-6-1-1)=2(n-1),n不是正整数?题目有误
设D为结点度数因为简单连通图所以Di>=1且sum(Di)=2*n,1,2,...,n因为存在Dx=3所以剩余n-1个结点度数和为sum(Di)-Dx=2*n-3假设不存在度数为1的结点那么Di>=2
反证法.假设所有顶点的度数最多为2,则度数总和D≤2n≠2(n+1),与握手定理矛盾.
证明反证法,如果G中所有结点的度数均小于3,或不超过2,则n个结点度数之和不超过2n,结点度数之和等于边数的2倍,即结点度数之和=2|E|=2n+2,故有2n≥2n+2,n≥n+1,矛盾.
N1+2片叶子.设有x片叶子,则此树有N1+N2+x个节点,树的边数比节点数少1,是N1+N2+x-1条边,由握手定理,3×N1+2×N2+x×1=2(N1+N2+x-1),解得x=N1+2,所以有N
答案应该是B.5此题在于理解邻接矩阵的意思:是5×5矩阵,说明有5个顶点.aij=1意思是第i个顶点与第j个顶点之间有一条边.如a21=a21=1,说明第1个顶点与第2个顶点之间有一条边.数总的边数,
#include<stdio.h>#include<stdlib.h>#include<conio.h>#include<malloc.h>#defin
正确,能够拓扑排序的一定是有向无环图
设G是一个图,结点集合为V,边集合为E,则G的结点(度之和)等于边数的两倍
在简单无向图G=中,如果V中的每个结点都与其余的结点邻接,则该图称为__正则图___;如果V有n个结点,那么他还是__n-1__度正则图.各顶点的度均相同的无向简单图称为正则图(regulargrap
假设不连通.有如下两种情况:1.最小连通分量有n个结点:此时共两个连通分量,每个分量n个结点.对于任一点,它的度至多是n-1,矛盾.2.最小连通分量小于n个结点:该分量中任一点的度不超过n,矛盾.