设G是n阶m条边的无相连通图,证明m>=n-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:32:48
设G是n(n>=2)阶欧拉图,证明G是2-边连通图

n欧拉图不一定是2-边连通图吧.举例:5阶完全图,显然为4-边连通图,且每顶点度为4,故也为欧拉图,为题设反例.

求解离散数学题目:假设一条带有m条边,n个顶点的连通平面性简单图不包含长度不大于3回路.证明:则m小于等于2n-4

设这个图有k个面.定义deg(Ri)是第i个面的次数,即这个面的边界长度.则一定有∑deg(Ri)=2m(对所有面的边界长度求和,相当于把每一条边算了两次)在本题里,∑deg(Ri)>=4k(因为每个

离散数学判断说明题,判断正确与否并说明理由:设G是一个连通平面图,且有6个结点11条边,则G有7个面.

答:根据平面图欧拉公式:v-e+r=2由题条件知:v=6,e=11,r=7带入满足公式所以判断题说法正确.

离散数学判断说明题,判断正确与否并说明理由:设G是一个有7个结点16条边的连通图,则G为平面图.

不正确.理由:根据平面图的必要条件为3v-6>=e,其中v为节点数,e为边数.代入数据,可得15>=16,可知不是平面图.【注意】3v-6>=e是必要条件,不是充分条件,也就是说不满足该公式就不是平面

G是一个具有n个结点的无向连通图,证明G至少有n-1条边,并证明具有n-1条边的无向连通图是一棵树

用扩大路径法,随意选取一个点,每需和其他一个点连接需要至少一条边,因为他是连通图,所以至少有N-1条边,只有N-1条边的时候每条边都是桥所以可知他就是一棵树

简单图G有n个结点,e条边,设e>(n-1)(n-2)/2,证明G是连通的

参考《图论及其应用》一书高等教育出版社张先迪李正良主编上面有你问题的答案很详细

设G是n阶m条的无向连通图,证明m>=n-1

对m用归纳法.再问:如何归纳?再答:当m=1时,图G有两种结构,一种是有两个顶点和一条关联这两个顶点的边构成,显然m=1,n=2.结论成立。另一种是由一条自回路构成,显然m=1,n=1.结论成立。假设

设无向连通图G有n个顶点,证明G至少有(n-1)条边.

设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边

G 是有 n-1 条边的图(n 是 G 的顶点数).证明:如果 G 中无圈,那么G 是一棵树.分可加.

这取决于你对树的定义是怎么给的.比如,对于我,树的定义可以是没有圈的连通图,也可以是边数等于顶点数-1的连通图等等再问:能写一下证明过程吗再答:你把定义写出来我才能回答啊

连通无向图G有k个奇顶点,如果把G变成无奇顶点的图,则在G中至少需要 加___ ___条边

无向连通图奇点的个数k一定为偶数,因此要想把G变成无奇点的图,至少需要加k/2条边.

离散数学证明题:设连通图G有k个奇数度的结点,证明在图G中至少要添加k/2条边才能使其成为欧拉图.

图G是欧拉图的充要条件是图G连通且所有的结点的度数都是偶数,因此要使连通图G成为欧拉图,既是要使所有的结点度数变为偶数.添加一条边后,可能会出现两种情况:1、边的两端连接在同一个结点上(环),此时该点

设G是有n个结点n条边的简单连通图,且G中存在度数为3的结点,证明G中至少有一个度数为1的结点

设D为结点度数因为简单连通图所以Di>=1且sum(Di)=2*n,1,2,...,n因为存在Dx=3所以剩余n-1个结点度数和为sum(Di)-Dx=2*n-3假设不存在度数为1的结点那么Di>=2

有向图G的强连通分量是指-----,一个连通图的---是一个极小连通子图

强连通分量好像是指可以双向连通的吧...后面的不记得了这是编译原理的东西?很早以前学的...都忘记了

设G=(a),F=(b)是两个有限循环群,G的阶是n,F的阶是m,证明:G与F同态,当且仅当m|n.

应该是证明:存在G到F的满同态,当且仅当m|n.G=作为n阶循环群,其中的元素可表示为a^i,0≤i充分性:若m|n,可设n=mk.定义映射φ:G→F,φ(a^i)=b^i,0≤i由F=是m阶循环群,

无向图G=,且|V|=n,|e|=m,试证明以下两个命题是等价命题:G中每对顶点间具有唯一的通路,G连通且n=m+1

G其实就是树.首先,如果G中每对顶点间具有唯一的通路,那么G当然是连通的.选取G的一个顶点,记为第1层顶点,所有和第一层顶点相邻的顶点记为第2层顶点,如此等等.主要到每个第n+1层的顶点都与一个第n层

无向连通图的连通分量!

选B,就1个连通分量.因为这个图本身就是连通图,所以是一个连通分量嘛~如果这个图不是连通的,那么它就至少有两个连通分量

矩阵唯一的证明题:设A是m*n阶矩阵,如果存在G(也是m*n阶矩阵)使得(1)AGA=A;(2)GAG=G;(3)(AG

高超的问题.G称为A的pseudo-inversematrix.不过一般不是转置而是共役转置(conjugatetranspose),A右上加*.引用Kalman1972年给出的证明.记A的转置为A'

证明!图论!证明:图G是连通的平面图,其点数为n,边数为e,则n-e+f=2

可以用归纳法证明.假设归纳面数f,f=1,就是一个简单只有一个面的情况,好证明.假设f>=3,想象平面图里最外的一个面F,它有一部分连续的边e1-n1-e2-n2-...-n_(p-1)-e_p(这里