设P是三角形所在平面内的一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:39:34
由CB向量=λPA向量+PB向量得CB向量-PB向量=λPA向量,即CP向量=λPA向量,那么点P一定在直线AC上.
∵a+b+c=0∴a+b=-c即OA+OB=-OC取AB中点为P则OA+OB=2OP∴OC=-2OP∴C,O,P三点共线,且|OC|=2|OP|CP是中线,那么O是三角形的重心,a●b=b●c=c●a
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC
作AB中点M,AC中点N,连MN则PM,PN分别过A',C',则由于PA':PM=2:3平面A`B`C`平行平面ABC
作两条边的垂直平分线,两线交于一点,过此点作三角型所在的平面的垂线,所得线上平面外的点均是所求点.
延长PG1交AB于P1,延长PG2交BC于P2,延长PG3交CA于P3.由重心性质,PG1/PP1=2=PG2/PP2.且P,P1,P2,G1,G2共面由相似可得G1G2//P1P2.同理,G1G3/
分析:过P作PQ⊥面ABC于Q,则Q为P在面ABC的投影,因为P到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的外心,Q到三角形ABC各边的距离相等,即Q为三角形ABC的外心,所以
过P作PQ⊥面ABC于Q,则Q为P在面ABC的投影,因为P到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的中心,因为角BAC为直,所以Q在线段BC上,所以在面PCB上有线段PQ⊥平
证明:因为向量CB=x向量PA+向量PB,所以向量CB-向量PB=x向量PA,即向量CP=x向量PA,所以P在AC所在直线上希望能帮到你O(∩_∩)O~
这样吧,设A在(0,0),B在(a,0),C在x轴上方令AB=a,AC=b,|AP|=l,角BCA=角A,于是有向量AC=b(cosA+i*sinA)于是l=1/5*AB+2/5*AC=1/5*a+2
证明:设O是P点在平面a上的射影,连结AO并延长,交BC与D连结BO并延长,交AC与E;因PA⊥PB,PA⊥PC,故PA⊥面PBC,故PA⊥BC;因PO⊥面ABC,故PO⊥BC,故BC⊥面PAO,故A
答案是5/2,这是填空题吧、?答案绝对这个.
垂直于三角形所在平面且过三角形外心的一条直线
1∶2∵向量BC-向量BP=向量BP-向量BA∴向量BC+向量BA=2向量BP∴P是AC中点∴三角形ABC与三角形ABP的面积之比=AP∶AC=1∶2再问:可以告诉我吗?今天刚学的,还是不清楚再答:利
因为O是三角形ABC的外心所以OA=OB=OC因为PA=PB=PC,PO=PO=PO所以△PAO≌△PBO≌△PCO所以∠POA=∠POB=∠POC=90°所以PO垂直平面ABC
AP=(2/3)AB+(1/3)ACAP=AB-(1/3)AB+(1/3)ACAP-AB=(1/3)(AC-AB)BP=(1/3)BC,从而P在BC上,且P是BC的一个靠近B点的三等分点,所以三角形A
MS是10个··一个是三角形的中心··三个是在△三条边上做三个等边△··在AC的中垂线上做BP=AC,可以上面一个下面一个这样一条边有2个三边有6个
P是三角形ABC所在平面&外的一点,P到三角形ABC三边的距离相等,O为P在平面&内的射影,且在三角形ABC内.求证:O是三角形ABC的内心.
过点p作CB,AC,AB的中线,分别交于点D,E,F.A1D=1/3PD,B1E=1/3PE,C1F=1/3PF.连接D,E,F.可得A1BI//DE,A1C1//DF,B1C1//EF;又因为DE/