设X1,X2,-,X48为相互独立且都服从区间01上的均匀分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:39:36
服从自由度为(2,2)的F分布X1+X2和X2+X4都服从自由度为2的卡方分布,所以[χ2(2)/2]/[χ2(2)/2]~F(2,2)建议你看下书本吧,三大抽样分布.
如果λ=8那答案就是对的
(X1,X2,X3)在立体区域0x1+x2}的概率之和.且由对称性不难看出这三个事件的概率是相等的.而概率P{x3>x1+x2}就是由平面x3=x1+x2,x1=0,x2=0,x3=1这四个平面所围立
数学期望具有线性性,有:(1)E(X+Y)=EX+EY.并且不必要求X,Y独立(2)E(aX+b)=aEX+b根据X1,X2,X3的分布,有E(X1)=4*1/2=2E(X2)=6*1/3=2E(X3
E(X)=E(X1+X2+X3)=E(X1)+E(X2)+E(X3)=0,同理E(Y)=0E(XY)=E(X2^2)+E(X3^2)=2B^2Cov(X,Y)=E(XY)-E(X)*E(Y)=2B^2
X=∑n=100XiEX=100,DX=200P(80
随机变量X1,X2,X3相互独立故D(Y)=D(X1-2X2+3X3)=D(X1)+D(2X2)+D(3X3)=D(X1)+4D(X2)+9D(X3)X1~b(5,0.2),二项分布所以D(X1)=5
因为x1,x2,x3相互独立所以D(X1-2X2+3X3)=D(X1)+4D(X2)+9D(X3)X1~U[0,6]D(X1)=(6-0)^2/12=3X2服从λ=1/2的指数分布D(x2)=2^2=
P[Z>t]=P[X1>t,...,Xn>t]=P[X1>t]^n,得知Z亦为参数为n的指数分步,所以期望是1/n,方差是1/n^2.做数学题最大的乐趣是想题,考试的时候没有人给你问.
1.求F(0)的值F(x1)+F(x2)=2F((x1+x2)/2)F((x1-x2)/2),x1=x2=x2F(x)=2F(x)F(0)F(0)=1F(x)+F(-x)=2F((x-x)/2)F((
伽马分布Ga(n,a)再问:能详细点吗给出步骤或者思路或者参考资料谢谢再答:指数分布Exp(a)是特殊的伽马分布Ga(1,a),在伽马分布的可加性得X1+X2+...+Xn~Ga(n,a)伽马分布可加
和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2
D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,
密度函数f(x)是X1的密度函数fX1(x)和X2的密度函数fX2(x)的卷积:fX1(x)*fX2(x)=∫(-∞→+∞)fX1(t)*fX2(x-t)dt当然,前提是X1和X2是独立的连续型随机变
x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|
服从正态分布的随机变量的线性组合仍然服从正态分布,所以样本均值(X-Y)服从N(0,36)分布,(注:X-Y服从N(u1-u2,(σ1^2)/n1+(σ2^2)/n2).剩下的就是求正态分布的概率问题
注意到相同下标的X不独立,不相同下标的X相互独立,则该题就解决了
根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√
(1)依题意,x4,x5,x6,x7越小越好,x1,x2,x3越大越好.(2)但x1