设Xn是概率空间上的一列同分布的随机变量,EX1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:51:33
一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}

想法:考虑能否求出U的分布函数,进而求其数学期望设F(y)是U的分布函数由定义:F(y)=P(U

一个概率题 设随机变量X的概率分布为

E(X)=0*0.1+1*0.4+2*0.5=1.4E(X^2)=0^2*0.1+1^2*0.4+2^2*0.5=2.4D(X+2)=D(X)=E(X^2)-E(X)^2=2.4-1.4^2=0.44

设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.

选A要满足切比雪夫大数定律,必须要求Xi的方差存在(一致有界)当然,D(Xi)存在蕴含了E(Xi)存在简单一点的方法就是排除对B选项,E(Xi)=∑{k=1,∞}k/[k*(k+1)]=∑{k=1,∞

设随机变量X1,X2,.Xn,...是独立同分布,其分布函数为F(X)=a+(1/π)*arctan(x/b),b≠0,

B绝对值号的意义:保证所求的概率不会出现负数的尴尬情况

概率中心极限定理,如果X1 X2 X3 .Xn是独立同分布的随机变量且具有相

这是三个变量,不是有固定值的数字三个全部服从相同的概率分布举个例子1~10随机抽取个数字X1你其实并不知道X1到底是多少X1服从分布就是以10%的概率取到1~10任何一个数X2如果说和X1的分布相同,

设X1,X2.Xn是来自均匀分布总体U(0,c)的样本,求样本的联合概率密度

均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是

设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别

X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)

x是[a,b]上独立同分布的概率变数,求让E(x)=0,v(x)=1的a和b.

缺条件,没法算.或者说,没有固定的答案.如果x是均匀分布,那么b=-a=根号3.如果x是标准正太分布,那么b=-a=无限大夹杂在1和2之间,有无数个分布,可以得出无限多的结果.我猜题里有一个x是均匀分

设X~Exp(y).y为常数且y>0.求X分布函数,设Z=min{x1,…xn}.求Z的概率密度函数

应该要求X_n独立同分布.X服从指数分布,从而由定义知,F(x)=积分从0到x{yexp(-ys)ds}=1-exp(-yx)Z=min{x_i},从而P(Z=z,x2>=z,...xn>=z)=1-

随机变量X1 X2 ...Xn 独立同分布 同分布是不是说这些变量的方差 期望都相等?

独立同分布是说随机变量之间相互独立,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.

依概率收敛问题设随机变量序列{Xn,n≥1}独立同分布,都服从U(0,a),其中a>0.令X(n)=max(1≤i≤n)

第一步计算出X(n)的分布函数,从而分布密度.(有现成公式)第二步计算P(|X(N)-a|>e)=P(a-ea再问:X(n)的分布函数该怎么求再答:如果U(0,a)的分布函数是F(x),则Xn的分布函

设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)

设X1...Xn的概率密度函数是fX(x),概率分布函数是FX(x)设随机变量Y=max(X1,...,Xn-1)先求Y的概率分布函数FY(y):FY(y)=P{Y

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

概率,X,Y同分布指的什么?

同分布就是服从相同的分布.二者不相等比如都服从标准正态分布,不知道XY之间的关系就没法算出E(XY)当然也就没法求协方差查看原帖

设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.

记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&

设随机变量X同Y独立同分布,它们取-1,1,两个值的概率分别为1/4 3/4,则P{XY=-1}=

P{XY=-1}=P{X=1,Y=-1}+P{X=-1,Y=1}=P{X=1}*P{Y=-1}+P{X=-1}*P{Y=1}=3/4*1/4+1/4*3/4=3/8

设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的

注意到相同下标的X不独立,不相同下标的X相互独立,则该题就解决了

设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X

E(Xn)=0×0.5+2×0.5=1E(X)=∑(1~n)E(Xi)/(3^i)=∑(1~n)1/(3^i)∑(1~n)1/(3^i)是一个等比数列,公比1/3,用等比求和公式得E(X)=1/2D(

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X