设X和Y相互独立并且都服从参数为p的01分布,问p为何值时X和Z相互独立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:16:18
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设两个随机变量X和Y相互独立且分别服从参数为a1,a2的泊松分布,则X+Y服从参数为什么的泊松分布?

X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料

设随机变量X与Y相互独立,并且均服从U(0, θ),求E(max{X,Y})

这是双变量函数的概率分布,先求出概率分布函数,再求导就得到密度函数.我明白你的意思,你是想让别人帮你做出来.我提供思路.你从分布函数出发,首先求z=max(x,y)的分布函数,它等于p(Z再问:这个混

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

设随机变量X和Y相互独立,且都服从正态分布N(0,1),计算概率:P(X*X+Y*Y

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

大学概率论:设X,Y相互独立,都服从参数为2的指数分布,则P(X

解 实际上本题就是不用计算也能得出所求的概率为1/2.因为X和Y是相互独立的,且服从相同的分布,联合密度是边缘密度之积,由对称性可得X<Y的概率一定是1/2.当然X>Y的概率也是

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量x与y相互独立,都服从参数为1的指数分布,求P{X

对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设随机变量X与Y相互独立,且都服从参数为1的指数分布,求Z=2X+2Y的密度函数

把他们各自的密度函数写出来再一加就是e^-2(e^x-e^y)

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

设某种货物的需求量X与供应量Y都在区间[0,a]上服从均匀分布,并且两者相互独立,则缺货的概率为多少?

缺货概率为P{X>Y}=∫∫{X>Y}fXY(x,y)dxdy因为X,Y独立所以fXY(x,y)=fX(x)fY(y)=(1/a)(1/a)=1/a^2因为只需考虑x>y所以P{X>Y}=∫∫(1/a

X,Y是相互独立的随机变量,都服从参数为n,p的二项分布 求证:Z=X+Y服从参数为2n,p的二项分布

由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=

设随机变量X与Y相互独立且分别服从参数λ=2和λ=1的指数分布 求P{X+Y≤1}

求出XY联合概率密度以后,在坐标轴XY上画出Y=-X-1的线,再根据X和Y的取值范围ie,即X>0,Y>0,把联合概率密度在围成的三角形内进行2重积分,即可算出最后答案,