设X的概率密度为:f(x)=1 2e-|x|,x属于无穷,求E(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:31:00
当x≧0时,y≧1,f(x)=e^(-x),F(x)=∫f(x)=-e^(-x)+C,当x→+∞时,F(x)=-e^(-x)+C=1,所以C=1,F(x)=1-e^(-x),所以F(y)=1-1/y,
EZ=∫ZP(x)dx=∫,e^x2(1-x)dx=2∫,e^xdx-∫,xe^xdx,这个在0,1之间积分即可EZ^2=∫Z^2P(x)dx=∫e^2x(2-2x)dx在(0,1)上球定积分DZ=E
用公式套一下就可以的.参见课本.李永乐的考研的概率论部分有的.
均匀分布,故c=1/2D(x)=∫1/2*(x-2)²dx=1/3(积分限为1到3)再问:如何知道它是均匀分布呢?再答:概率密度为f(x)=c,是常数,所以是均匀分布再问:D(x)=∫1/2
刚学概率?这可不是应用题,差得远呢···F(x)=0x再问:想问下E(X)是不是(b+a)/2方差D(X)=E(X^2)-[E(X)]^2=(a^2+ab+b^2)/3-[(b+a)/2]^2还有个期
∫(-∞,+∞)f(x)dt=∫[1,2]Ax^2dx+∫[2,3]Axdx=A/3*x^3[1,2]+A/2x^2[2,3]=7/3A+5/2A=1A=6/29F(x)=∫(-∞,x)f(t)dt=
f(y)=(1/2)*f[(y-3)/(-2)]
1.∫k/(1+x^2)dx=1-->k=2/π2.E(x)=(2/π).∫x/(1+x^2)dx=03.D(x)=)=(2/π).∫x^2/(1+x^2)dx=4/π-1
EX=∫[1,+∞]x*Өx^(-Ө-1)dx=Ө∫[1,+∞]x^(-Ө)dx=Ө/(1-Ө).Ө=EX/(1+E
先算期望,套公式E(x)=积分xf(x),积分区间为(-a,a)(可以假设a>0,a显然!=0,否者|x|
1.f(x)=ax(1-x^2)0
主要是搞清楚积分范围
从所给联合密度知属于二维均匀分布,概率可用面积之比计算.x+y=1刚好是正方形区域的对角线,故P{X+Y>1}=1/2
以X取值为分段标准当X
∫(-∞,+∞)f(x)dx=∫[1,+∞)c/X^2dx=-c/x[1,+∞)=c=1
你要注意我的解题过程:以后有问题可以在电脑上点击如下链接:进入我的页面后点击右边我的头像下的“向他提问”按钮即可.再问:大神那个关于y的边缘密度函数好像反了呀!!!再答:画画图看一看,应该不会啊
经济数学团队帮你解答,有不清楚请追问.请及时评价.
就是找f(x)在所取x值之前一共积分了多少,分段函数就分段考虑,注意累积即可F(x)=0(x