设y(x)为可导函数ty(t)dt=x^2 y(x),求y(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:28:15
将直线l1的方程化为普通方程得3x-y+a-3=0,将直线l2的方程化为直角坐标方程得3x-y-4=0,由两平行线的距离公式得|a-3+4|10=10⇒|a+1|=10⇒a=9或a=-11.故答案为:
f'(x)-f(x)=e^xf'(x)e^(-x)-f(x)e^(-x)=1[f(x)e^(-x)]'=1d(f(x)e^(-x))=dxf(x)e^(-x)=x+Cf(x)=xe^x+Ce^x其中C
dy/dx=(dy/dt)/(dx/dt)显然dx/dt=1/(1+t²)给出的y是关于t的隐函数,可以不管这些,直接把y看成是t的函数,然后两边求导,得2dy/dt-(y²+2t
dy/dx=cos{f[sinf(x)]}*{f[sinf(x)]}'=cos{f[sinf(x)]}*f‘[sinf(x)]*[sinf(x)]’=cos{f[sinf(x)]}*f‘[sinf(x
令u=x+arctanx,则u'=1+1/(1+x^2)则y=f^2(u)dy/dx=2f(u)f'(u)u'=2f(u)f'(u)[1+1/(x+x^2)]
(1)曲线C的参数方程为x=2+3cosθy=−1+3sinθ,可得3cosθ=x−23sinθ=y+1,结合cos2θ+sin2θ=1,可得曲线C的直角坐标方程为:(x-2)2+(y+1)2=9它是
令u=x^yv=y^xdz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y*x^(y-1)+df/dv*lny*y^xdz/dy=dz/du*du/dy+dz/dv*dv/dy=
1)y'=f'(tanx)*(tanx)'=f'(tanx)*(secx)^22)y'=f'(x^2)*2x+f'(x)/f(x)
∫[0→x]tƒ(t)dt=ƒ(x)+x²、两边求导xƒ(x)=ƒ'(x)+2x-->xy=y'+2xdy/dx=xy-2x=x(y-2)dy/(y-
y'e^x+ye^x-ye^x=1y'e^x=1y'=e^(-x)y=-e^(-x)+c又x=0时y(0)-0=0+1y(0)=1所以1=-1+cc=2即解y(x)=-e^(-x)+2
∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/
再问:错了,答案是y=2/(3e^(x^2)-1)再答:没有给出初值条件,我只是帮你找到通解而已不跳步了,给个正式的通解你再问:如何证明?再答:那就要题目给条件了例如给了y|(x=0)=1代入通解方程
这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……
∫(0,x)f(t)t^2dt=f(x)+3x,令x=0,那么:f(0)=0两边求导得:f(x)x^2=f'(x)+3,f'(x)=f(x)x^2-3,这是一阶线性方程,通解为:f(x)=e^(x^3
对上式求导得:2*f(x)*F(x)=f(x)*sinx/(2+cosx),其中F(X)为f(x)的导数,则:F(x)=sinx/(4+2*cosx),积分得,f(x)=-0.5*ln(4+2cosx
两边对x求导得:2f'(x)f(x)=f(x)sinx/(2加cosx)2f'(x)=sinx/(2加cosx)积分得:f(x)=(-1/2)ln|2加cosx|加C因f'(0)=0,C=(1/2)l
dyf'(arcsin(1/x))—=-———————dxx√(x^2-1)
两边求导:xy=2x+y'x(y-2)=dy/dxxdx=dy/(y-2)两边积分:1/2x^2=ln|y-2|+C在原方程里令x=0,得y=0,所以C=-ln2所以1/2x^2=ln(|y-2|/2
f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+