设y(x)为可导函数ty(t)dt=x^2 y(x),求y(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:28:15
(2014•武汉模拟)设直线l1的参数方程为x=1+ty=a+3t.

将直线l1的方程化为普通方程得3x-y+a-3=0,将直线l2的方程化为直角坐标方程得3x-y-4=0,由两平行线的距离公式得|a-3+4|10=10⇒|a+1|=10⇒a=9或a=-11.故答案为:

设函数f(x)可导,且满足f(x)-∫(上限为x,下限为0)f(t)dt=e^x,求f(x) 需要详解,

f'(x)-f(x)=e^xf'(x)e^(-x)-f(x)e^(-x)=1[f(x)e^(-x)]'=1d(f(x)e^(-x))=dxf(x)e^(-x)=x+Cf(x)=xe^x+Ce^x其中C

【数学】求导设y=y(x)由{x=arctant,2y-ty^2+e^t =5 }确定,求dy/dx

dy/dx=(dy/dt)/(dx/dt)显然dx/dt=1/(1+t²)给出的y是关于t的隐函数,可以不管这些,直接把y看成是t的函数,然后两边求导,得2dy/dt-(y²+2t

设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=

dy/dx=cos{f[sinf(x)]}*{f[sinf(x)]}'=cos{f[sinf(x)]}*f‘[sinf(x)]*[sinf(x)]’=cos{f[sinf(x)]}*f‘[sinf(x

设f x 为可导函数,y=f^2(x+arctanx),求dy/dx

令u=x+arctanx,则u'=1+1/(1+x^2)则y=f^2(u)dy/dx=2f(u)f'(u)u'=2f(u)f'(u)[1+1/(x+x^2)]

(1)设曲线C的参数方程为x=2+3cosθy=−1+3sinθ,直线l的参数方程为x=1+2ty=1+t(t为参数),

(1)曲线C的参数方程为x=2+3cosθy=−1+3sinθ,可得3cosθ=x−23sinθ=y+1,结合cos2θ+sin2θ=1,可得曲线C的直角坐标方程为:(x-2)2+(y+1)2=9它是

设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导

令u=x^yv=y^xdz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y*x^(y-1)+df/dv*lny*y^xdz/dy=dz/du*du/dy+dz/dv*dv/dy=

设f(x)为可导函数,求dy/dx (1)y=f(tanx) (2)y=f(x^2)+lnf(x)

1)y'=f'(tanx)*(tanx)'=f'(tanx)*(secx)^22)y'=f'(x^2)*2x+f'(x)/f(x)

17,设f(x)为可导函数,且满足∫0到x tf(t)dt=f(x)+x^2 求f(x)

∫[0→x]tƒ(t)dt=ƒ(x)+x²、两边求导xƒ(x)=ƒ'(x)+2x-->xy=y'+2xdy/dx=xy-2x=x(y-2)dy/(y-

设y=y(x)为可导函数,且满足y(x)e^x-y(t)e^tdt=x+1,试求y(x)

y'e^x+ye^x-ye^x=1y'e^x=1y'=e^(-x)y=-e^(-x)+c又x=0时y(0)-0=0+1y(0)=1所以1=-1+cc=2即解y(x)=-e^(-x)+2

设z=y/(f(x^2-y^2)),其中f为可导函数,验证

∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/

求满足下列关系的函数f(x),∫(0到x)y(t)dt+∫(0到x)(x-t)[2ty(t)+ty^2(t)]dt=x

再问:错了,答案是y=2/(3e^(x^2)-1)再答:没有给出初值条件,我只是帮你找到通解而已不跳步了,给个正式的通解你再问:如何证明?再答:那就要题目给条件了例如给了y|(x=0)=1代入通解方程

设f(x,y,z)可微,对一切t不等于0,有f(tx,ty,tz)=tf(x,y,z),试证:xf'(x)+yf'(y)

这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……

8、设f(x)为可导函数,且满足∫0到x f(t)t^2 dt=f(x)+3x 求f(x)

∫(0,x)f(t)t^2dt=f(x)+3x,令x=0,那么:f(0)=0两边求导得:f(x)x^2=f'(x)+3,f'(x)=f(x)x^2-3,这是一阶线性方程,通解为:f(x)=e^(x^3

设f(x)为连续可导函数,f(x)横不等于0,如果f(x)^2=∫(f(t)*sint)dt/(2+cost) (t的上

对上式求导得:2*f(x)*F(x)=f(x)*sinx/(2+cosx),其中F(X)为f(x)的导数,则:F(x)=sinx/(4+2*cosx),积分得,f(x)=-0.5*ln(4+2cosx

设f(x)为连续可导函数,f(x)恒不等于0、如果[f(x)]^2=∫(0-x) f(t)sintdt/(2+cost)

两边对x求导得:2f'(x)f(x)=f(x)sinx/(2加cosx)2f'(x)=sinx/(2加cosx)积分得:f(x)=(-1/2)ln|2加cosx|加C因f'(0)=0,C=(1/2)l

设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))

dyf'(arcsin(1/x))—=-———————dxx√(x^2-1)

设y(x)在R上连续且满足:∫(下面是0,上面是x)ty(t)dt=x^2+y(x),求函数y(x)

两边求导:xy=2x+y'x(y-2)=dy/dxxdx=dy/(y-2)两边积分:1/2x^2=ln|y-2|+C在原方程里令x=0,得y=0,所以C=-ln2所以1/2x^2=ln(|y-2|/2

设函数y=∫(0,x)(x-t)f(t)dt,f(x)为连续函数,

f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+