设y=y(x)是由sin(xy)=ln x e y 1确定的隐函数,则y′(0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:15:38
方程两边同时求x对y的导:y+xdy/dx+1/x+2ydy/dx=0,dy/dx=-(y+1/x)/(x+2y),dy=-(y+1/x)dx/(x+2y)
sin(xy)+ln(y-x)=x两边同时对x求导得:cos(xy)·(y+xy')+(y'-1)/(y-x)=1①当x=0时,sin0-lny=0,解得y=1把x=0,y=1代入①得:cos0·(1
xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^
1)y|x=o当x=0时sin(0)-1/y-0=1得:y|x=0=-1(2)y'|x=osin(xy)-1/y-x=1两边对x求导:cos(xy)(y+xy')+y'/y^2-1=0当x=0时y=-
是把y看作关于x的函数.再问:不是很懂,给个步骤吧。谢谢。再答:1/y-x是(1/y)-x的意思,还是1/(y-x)?再问:1/(y-x)再答:把y看做x的复合函数,两边对x求导,得cos(xy)·(
1)x=0代入方程:1-e^y=0,得y(0)=0两边对X求导:e^x-y'e^y=cos(xy)(y+xy')y'=[e^x-ycos(xy)]/[xcos(xy)+e^y]代入x=0,y(0)=0
再答:隐函数高阶求导。再答:
e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))
这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos
设函数f(x,y)=sin(x+y),那么f(0,xy)=(sinxy)应该是sin0+sinsy=0+sinxy=sinxy再问:limsinxy\2x=()补充x→0,y→3另外一道题
cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]
网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式
Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)
这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x
x=0时,代入方程得:1+1=y,得:y=2对x求导:(y+xy')e^xy-sin(xy)*(y+xy')=y'将x=0,y=2代入得:2=y'故dy(0)=2dx
在方程中令x=0可得,0=lney(0)+1,从而可得,y(0)=e2将方程两边对x求导数,得:cos(xy)(y+xy′)=1x+e−y′y将x=0,y(0)=e2代入,有e2=1e−y′(0)e2
(cos(x+y)-y)\(x-cos(x+y))
dy/dx=-fx/fy,你自己可以算吧
化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[