设y=y(x)由方程y=x siny确定,则dy dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:43:58
设函数y=y(x)由方程x^2+y^2=1确定,求dy/dx

d(y^2)/dx=d(y^2)/dy*dy/dx=2y*dy/dx这个复合函数求导法则正如ovtr0001仁兄所说那样,你可以翻翻课本这个……还要详细点呀?你有书么?你看书那里不懂可以提出来,我可能

设函数y=y(x)由方程lny=tan(xy)所确定,求dy

左右对x求导有y'/y=sec²(xy)(y+xy')整理有y'=y²/(cos(xy)-xy)所以dy=(y²/(cos(xy)-xy))dx

设函数y由方程ln y+x/y=0确定,求dy/dx

lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-

设函数y=y(x)由方程x^2+y^2=1确定,求dy/dx

两边对x求导2x+2y*dy/dx=0dy/dx=-x/y有不明白的追问再问:刚学不太明白,2x+2y*dy/dx=0里的dy/dx哪来的,是y'吗?再答:是的复合函数求导注意这里y是x的函数不妨换个

设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

由隐函数微分法可得:-sin(x+y)(1+y′)+y′=0-sin(x+y)+[1-sin(x+y)]y′=0∴y′=sin(x+y)/[1-sin(x+y)].

设y=y(x) 由方程ysinx=cos(x-y) 所确定,则y'(0)=

设y=y(x)由方程ysinx=cos(x-y)所确定,则y'(0)=x=0时cos(-y)=cosy=0,故y=π/2+2kπ,k∈ZF(x,y)=ysinx-cos(x-y)=0dy/dx=-(&

设y=y(x)由方程e^y-xy=0所确定,求y'(x)

这是一个复合函数求导,y=y(x)所以求e^y的导数首先对整体求导,再对y求导即为e^y*y'xy的导数为y+x*y'(根据求导规则)所以两边求导可得e^y*y'-y-x*y'=0

设y=f(x) 由方程e^y=xy确定,则dy/dx=?

两边对x求导有y'e^y=y+xy'整理解得y‘=dy/dx=x/(e^y-x)

设函数y=f(x)由方程e∧y+sin(x+y)=1决定,求二阶导数

两边对x求导:y'e^y+(1+y')cos(x+y)=0,1)这里可得到y'=-cos(x+y)/[e^y+cos(x+y)]再对1)求导:y"e^y+(y')^2e^y+y"cos(x+y)-(1

设y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

对两边求导:[-sin(x+y)](1+dy/dx)+dy/dx=0-sin(x+y)-[sin(x+y)]dy/dx+dy/dx=0dy/dx=[sin(x+y)]/[1-sin(x+y)]

,.设y=y(x)是由方程e^x-e^y=xy所确定的隐函数 求y'(0)另一题设y=y(x)由参数方程x=cos t和

网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式

设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy

分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.

设函数y=y(x)由方程xy+e^y=1所确定,求y"(0)

xy+e^y=1e^y(0)=1y(0)=0xy'+y+e^yy'=00+y(0)+y'(0)=0y'(0)=0xy''+y'+y'+e^yy''+(y')^2e^y=00+2y'(0)+y''(0)

设y(x)由方程e^y-e^x=xy 所确定的隐函数 求y' y'(0)

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设函数y=f(x)由方程y=xe^y确定,求dy/dx 为什么 y'=e^y+xe^y*y'

y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得

设函数y=y(x)由方程(x+y)^(1/x)=y所确定,则dy/dx=?

ln(x+y)=x·lny(1+y‘)/(x+y)=lny+x/y·y‘y+y·y‘=y(x+y)lny+x(x+y)·y‘y‘=【y(x+x)lny-y】/【y-x(x+y)】再问:лл����

设函数y=y(x)由方程e^y+xy=e所确定,求y’(0)

两边对x求导数,得y'*e^y+y+xy'=0,在原方程中令x=0可得y=1,因此,将x=0,y=1代入上式可得y'+1=0,即y'(0)=-1.再问:对x求导时y可以当成一个常数吗?为什么要用公式(

设函数y=y(x)由方程e^y+xy+e^x=0确定,求y''(0)

/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'

设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy

化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[