设三阶实对称矩阵A,r(A)=2,且A^2 5A=0,则A全部特征值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:55:30
这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?
可以用Gauss消去法证明可以合同对角化,然后只要加一句可逆变换不改变秩即可.如果还不会看下面的提示:取一个非零2阶主子式,若其对角元为0则用[1,1;-1,1]作用上去,这样它至少一个对角元非零.不
表示矩阵A的秩
令F=[e_n,...,e_1],也就是把单位阵的列反过来排那么A=RR^TFAF=(FRF)(FR^TF)再问:单位阵的列反过来还是原来的单位阵啊能不能把过程再说得详细些呀再答:F=00101010
我们一步一步来.首先对于实数域上的列向量X,有X'X≥0,且等号成立当且仅当X=0.由这一点我们可以证明,对实矩阵B,有B'B的秩R(B'B)=B的秩R(B).方法是考虑两个线性方程组BX=0与B'B
因为A可相似对角化所以A与对角矩阵B相似,且B的主对角线上的元素都是A的特征值而相似矩阵的秩相同所以对角矩阵B的秩也是为2所以A的非零特征值的个数为2故特征值为0,-2,-2总结:可对角化的矩阵的秩等
这是因为"可对角化的矩阵的秩等于其非零特征值的个数"A是实对称矩阵,A(A+2E)=0,故A的特征值只能是0,-2由r(A)=2知A的特征值为0,-2,-2.所以A^2+3E的特征值为(λ^2+3):
1.A'记作A的转置A'=(P'BP)'=P'B'PB为m阶对称正定阵,即B'=B所以A'=P'BP=A,即A是对称的.2.r维非零向量x,x'Ax=x'(P'BP)x=(Px)'B(Px)因为R(P
(A)=2.知识点:可对角化的矩阵的秩等于其非零特征值的个数
设a是A的特征值,则a^2+2a是A^2+2A的特征值.而A^2+2A=0所以a^2+2a=0即a(a+2)=0所以A的特征值为0或2.因为R(A)=2所以A的特征值为:0,2,2.
(A)=n-2.
证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^
再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素
A^2=A,A的特征值是0和1.因为A是实对称矩阵,可对角化,所以A的秩就是对角化后非零主对角线元素的个数,所以A的特征值是r个1与n-r个0.所以2E-A的特征值是r个1与n-r个2,所以|2E-A
B^T=[(P^T)AP]^T=(P^T)A^TP=(P^T)AP=B所以B也是对称阵因为P是可逆阵,所以R(P)=n然后利用两个不等式:R(AP)>=R(A)+R(P)-n=R(A)+n-n=R(A
你问的题还是有些份量的哈,哪来的题?解:第1步.设a是A的特征值.则a^2-a是A^2-A的特征值而A^2-A=0所以a^2-a=0,a(a-1)=0.所以a=0或1.第2步.因为实对称矩阵可对角化所
做谱分解A=QΛQ^T然后取对角阵D使得D^3=ΛB=QDQ^T就满足条件再问:什么是谱分解啊?再问:什么是谱分解啊?再问:什么是谱分解啊?
A^2-5A=O,可以得出λ^2-5λ=O(这个不懂的话再问).所以λ1=0,λ2=5.因为R(A)=2,根据A实对称,可以对角化,且对角阵的对角元是特征值.对角化是初等变化,不改变秩.所以对角阵的秩
因为R(A-2E)=1所以A的属于特征值2的线性无关的特征向量有3-1=2个.而A是实对称矩阵,k重特征值有k个线性无关的特征向量所以2是A的二重特征值.
设a是A的特征值则a^2-a是A^2-A的特征值因为A^2-A=0所以a^2-a=0所以a=1或a=0即A的特征值只能是1或0.又因为A为实对称矩阵,所以A必可正交对角化即存在正交矩阵T满足T^-1A