已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:53:18
已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)
我能求出矩阵A的特征值为0或-2但是答案说由于实对称矩阵必可以相似对角化且秩r(A)=r(相似对角化符号)=2,所以A的特征值是0,-2,-2.请问为什么可以确定-2为二重特征值(注:相似对角化的符号不会打)
我能求出矩阵A的特征值为0或-2但是答案说由于实对称矩阵必可以相似对角化且秩r(A)=r(相似对角化符号)=2,所以A的特征值是0,-2,-2.请问为什么可以确定-2为二重特征值(注:相似对角化的符号不会打)
因为A可相似对角化
所以A与对角矩阵B相似, 且B的主对角线上的元素都是A的特征值
而相似矩阵的秩相同
所以对角矩阵B的秩也是为2
所以A的非零特征值的个数为2
故特征值为 0,-2,-2
总结: 可对角化的矩阵的秩 等于 矩阵非零特征值的个数
所以A与对角矩阵B相似, 且B的主对角线上的元素都是A的特征值
而相似矩阵的秩相同
所以对角矩阵B的秩也是为2
所以A的非零特征值的个数为2
故特征值为 0,-2,-2
总结: 可对角化的矩阵的秩 等于 矩阵非零特征值的个数
已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)
设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.
设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵
设A是秩为r的n阶实对称矩阵,满足A^4-3A^3+3A^2-2A=0,则A的n个特征值?
三阶实对称矩阵,R(A)=2,A^2+2A=0,求特征值
已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.
n阶矩阵A满足A^2=A,求A的特征值?并证明E+A可逆?
矩阵A秩为三,为实对称矩阵 A^2+A=0.求特征值
已知A、B为4阶矩阵,若满足AB+2B=0,r(B)=2,且行列式丨A+E丨=丨A-2E丨=0 ,(1)求A的特征值;(