设为总体N(u,)的一个样本,试适当选择常数c,使为无偏估计
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:40:29
a=4..再问:��Ĺ����>再答:��������ֲ�Ҫ�����DZ���̬�ֲ�Xi/0.5~N(0,1)Xi^2/0.25=a*Xi^2a=4
再问:请问Var是什么啊?再答:方差呀
EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516
选DX拔=0,所以A、B错C由单正态总体的抽样分布定理得X拔/(S/根号n)~t(n-1),C错D中把n-1移到分母里面,得到分子是自由度为1的卡方分布,分母是自由度为n-1的卡方分布,满足F分布的定
2(1-Φ(2)),然后查正态分布表,用的是同分布中心极限定理.不好打,就是把样本均值与总体均值之差标准化,除以σ/√n,然后5也除以这个,因为这个标准正态分布关于Y轴对称,所以就2倍的那个了.
本均值的方差=D(X)/10=1.2
选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正
对任意i,显然都有E(Xi)=θ/2,故E(θ1)=2E(X0)=2/n∑E(Xi)=2*θ/2=θ令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t
fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)
(1)如果对任意的n,有Xn+1=Xn+2计算X2=(5)X3=(7)X4=(9)①根据上面一小题的结果,请试着把Xn用n表示出来:Xn=(2n+1)②计算X2004=(2009)(2)如果对任意的n
样本方差Sn运用定理(n-1)Sn^2/σ^2服从自由度为(n-1)的χ方分布代入数据(9-1)*6/16=3(9-1)*14/16=7查表+线性插入计算得P(χ^2(8)>3)=0.932P(χ^2
第一个标准正太第二个t(n-1)
再问:啊在书上看到了概念不好意思==三克油么么哒ww
s^2是修正样本方差,那么17*s^2/σ^2符合卡方(17)分布,p(s^2/a^217*1.2052)=1-p(17*s^2/σ^2>20.4884),查表,=1-X^2(17),上分位点α=0.
已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b