设函数f(x)=x的平方*(x-1)*(x-2)*(x-3)驻点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:41:13
f(x)=x^3-3x^2-9xf'(x)=3x^2-6x-9=0x^2-2x-3=0x1=-1x2=3当x<-1时,f'(x)<0,f(x)单调递减;当-1≤x≤3时,f'(x)≥0,f(x)单调递
/>∵f(x)=x^2+|x-2|-1∴f(-x)=(-x)^2+|-x-2|-1=x^2+|x+2|-1∴f(-x)≠-f(x),且f(-x)≠f(x)∴f(x)是非奇非偶函数.当x-2≥0,即x≥
3-2x-x^2>=0即x^2+2x-3
f=2cos^2x+√sin2x因为cos^2x≥0,√sin2x≥0,所以只有在二者同时为0时才能等于0.cos^2x=0意味着x=kπ+π/2.sin2x=0意味着x=kπ/2.因此公共部分为x=
f(g(x))的值域是大于等于0|g(x)|g(x)>=0|g(x)|>=1,f(g(x))>=1,g(x)>=1,或g(x)
a=0时,f(x)为偶函数a不等于0,则f(x)为非奇非偶函数
f'(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)=0x1=-1,x2=3x3时,f'(x)>0-1
求导y'=3x²-6x-9=0=3(x²-2x-3)=0=3(x-3)(x+1)=0所以x=3或x=-1函数在x=-1时取得极大值为y=(-1)³-3(-1)²
f(x)'=3x^2-2x-1,当f(x)'=0=3x^2-2x-1时,有x=1或x=-1/3,利用穿针引线法知:x在x=-1/3处有极大值,x在x=1处有极小值;f(x)在(-无穷,-1/3]上单调
第一问不赘述了,求一次导数分解因式令其等于零,划分区间,就出来结果了.第二问.求一次导结果为:e^x+xe^x-2ax-1.记为g(x),如果要原函数在x非负是值也为非负,因f(0)=0,所以只要其导
f'(x)=[2(x^2+2)-(2x+1)(2x)]/(x^2+2)^2=-2(x^2+x-2)/(x^2+2)^2=-2(x+2)(x-1)/(x^2+2)^2当-2
函数f(x)=2x/(x平方+8)=2/(x+8/x)t=x+8/x是对勾函数,值域为[4√2,+∞)∴1/t∈(0,√2/8]∴f(x)∈(0,√2/4]即x>0时,函数的值域为(0,√2/4]希望
f(x)=9-x²=0-->x=±3则使函数f(x)有零点的区间是两点:-3,+3
第一问,m=0时,显然满足要求;m≠0时是二次函数,因此必须有m<0,即抛物线开口向下时条件才会成立,然后再求出该函数的最值,即抛物线顶点的纵坐标值,令其小于零即可解出一个范围,再与m<0求一个交集即
f(x)=lg[x+√(x^2+1)]1.函数f(x)=lg[x+√(x^2+1)]有意义只需x+√(x^2+1)>0因为x+√(x^2+1)=1/[√(x^2+1)-x]又x^2+1>x^2恒成立故
原函数f(x+1)=x^2+2x+5中把5分开1+4即f(x+1)=x^2+2x+1+4f(x+1)=(x+1)^2+4所以F(X)=X^2+4所以f(x)的导数=2x
1:因为f(x+1/x)=x[2]+(1/x)[2]=(x+1/x)[2]-2所以f(x)=x[2]-2(注:[2]表示平方)f(1/x)=(1/x)[2]-22:断点是0点和1点.属于第二类间断点.
若a=0,则为偶函数,若a非0,则非奇非偶
1、分母1+x²≠0恒成立所以定义域是R2、f(x)=(1-x²)/(1+x²)则f(-x)=(1-x²)/(1+x²)=f(x)且定义域是R,关于原