设函数fx=ax-x分之b,曲线y=fx在点(2,f2)处的切线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:42:20
已知函数fx=1/3x^3-ax+b,其中实数a,b是常数

fx=1/3x^3-ax+b当a=1时,fx=1/3x^3-x+bf'x=x^2-1令f‘x>0得到x>1或x

已知函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值,且函数fx只有一个零点,求b

解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)

设函数fx=x+1分之x+2,判断fx的单调区间,并证明,

再答:����再答:л��再问:�Ǻǣ���Ӧ��л��

设函数fx=ax+cosx,x[o,π],设函数fx小于等于1+sinx,求a的取值范围

AX+COSX小于等于1+SINXCOSX-SINX小于等于1-AX根号2*COS(X+PAI/4)小于等于1-AX由Y=根号2*COS(X+PAI/4)和Y=1-AX的图像可直接判定,A小于等于0画

已知函数f(x)=e^x+ax^2+bx 1.当a=0 b=-1时 求fx单调区间 2.设函数fx在

1.f(x)=e^x-xf'(x)=e^x-1x0,f(x)的递减区间是(-∞,0),递增区间是(0,+∞).2.f'(x)=e^x+2ax+b函数f(x)在点p(t,f(t))的处切线L的方程为:y

设函数Fx=ax^2+bx+1.(a.b∈R)

Fx=ax^2+bx+1F(-1)=a-b+1=0对于任意函数均有Fx≥0b^2-4a≤0a>0解得(a-1)^2≤0a=1b=2Fx=x^2+2x+1Gx=xFx-kx=x^3+2x^2+(1-k)

已知函数fx=-x∧3+ax∧2+b (1)若a=0b=2 求Fx=(2x+1)fx的导数

这是复合函数求导么首先把ab分别带入fx得到fx=-x³+2接着对(2x+1)求导得到2,对fx求导得到-3x²,再利用复合函数求导法则得到答案-8x³-3x²

设函数fx=lnx - ax + (1-a)/x - 1

设函数f(x)=lnx-ax+frac{1-a}{x}-1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)当a=frac{1}{3}时,求函数f(x)的单调区间-高中数学-菁优网http

一道导数数学题.设函数fx=ax-2-lnx

原式即证:e^x>lnx+2∵e^x>x+1(用导数证)x-1>lnx(用导数证)∴e^x>x+1=x-1+2>lnx+2结论得证(上面的大于号都带等但不同是取等)

已知函数fx=fx=x³/3-x²+ax+b的图像在P(0,f(0))处的切线方程为y=3x-2,设

先求出f(x)和g(x)的表达式说明:①考试时红色部分的解答是应该要做出来的,这部分做出来了,能拿60%左右的分数.       

已知函数fx=ax+b分之x平方,ab为常数,且方程fx-x+12=0有两个实数为3 4的根,求

题目已知函数f(x)=ax+b分之x²(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4求(1)函数f(x)的解析式(2)设k>1,解关于x的不等式f(x)<[(k+

已知函数fx=ax^2-1(a,x属于R),设集合A={x/fx=x},集合B={x/f[f(x)] =x},且A=B不

重点化简集合B.f[f(x)]=a(ax^2-1)^2-1=xa(ax^2-1)^2=x+1a(ax^2-1)^2-ax^2=x+1-ax^2a(ax^2-1+x)(ax^2-1-x)+(ax^2-x

已知函数gx=x的平方+1分之ax的平方+8x+b的值域是[1,9],试求函数fx=根号下ax平方+8x+b的定义域和值

将分母乘过去化简可得(a-y)x^2+8x+(b-y)=0这必须是一个二次方程(一次方程值域不能为一个闭区间)∴必有Δ≥0的解是[1,9]即y^2-(a+b)y+ab-16≤0的解是[1,9]即1和9

已知函数fx=x^3-x^2+ax+b

再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==

设函数fx=x^3+ax^2-a^2x+m其中实数a>0.

这是求什么啊,怎么连个问题也没有

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x^3+ax^2-a^2x+m若a=1时函数fx有三个不同的零点

(1)对f(x)求导得:f(x)'=3x^2+2ax-a^2解得两个极值点分别为:x1=-a,x2=a/3当a=0时:x1=x2=0,故此时f(x)在R上都不存在极值点,满足条件.当a≠0时:考虑到x

设函数fx=ax^2+x-a,a属于R,1)

(1)(-4a^2-1)/(4a)=17/8-32a^2-8=68a8a^2+17a+2=0(a+2)(8a+1)=0a=-2ora=-1/8(2)ax^2+x-a>1ax^2+x-a-1>0(x-1

设函数fx=ax立方-(a+b)x方+bx+c

1)f'(x)=3ax^2-2(a+b)x+bf'(1/3)=3a/9-2(a+b)/3+b=(-a+b)/3=0,因此有a=b故f'(x)=3ax^2-4ax+a=a(3x^2-4x+1)=a(3x