设函数z=ln根号下x2 y2,则偏方z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:27:12
f(n)-g(n)=ln{[√[n^2+1)-n]/[n-√(n^2-1)]=ln{2n/[√(n^2+1)+√(n^2-1)]+√(n^4-1)-n^2}
x=ylnz-ylny两边对x求导z&x表示z对x求偏导1=y*(1/z)*(z&x)z&x=z/y=e^(x/y)其实你的这个问题不是隐函数求导,不过你这样问我就用隐函数求导方法来做了,如果有不清楚
∵y=ln[x+√(x^2+a^2)],∴e^y=x+√(x^2+a^2),∴(e^y-x)^2=x^2+a^2,∴2(e^y-x)(e^y-x)′=2x,∴[x+√(x^2+a^2)-x][(e^y
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz
dz=(бz/бx)dx+(бz/бy)dy由x²-z²+ln(y/z)=0求出бz/бx、бz/бy1、两边对x求偏导2x-2z(бz/бx)+(z/y){[0-y(бz/бx)
方程x^2-z^2+lny-lnz=0两端对x求导得2x-2zz'x-z'x/z=0z'x=2x/(2z+1/z)两端对y求导得-2zz'y+1/y-z'y/z=0z'y=1/[y(2z+1/z)]因
{(x,y)|x+y>=1}
∂z/∂x=2x/(1+x^2+y^2)∂z/∂y=2y/(1+x^2+y^2)dz=∂z/∂xdx+∂z/W
z=ln√(x-√y)因为x-√y>0,所以x>√y≥0又y≥0,即x²>y≥0定义域x²>y≥0就是在第一象限画出从平面原点O出发向右上方的一条y=x²的抛物线,定义域
z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz
z=arctanx/y+ln√(x^2+y^2)编微分的符号打不出来,只有用d代替了dz/dx=1/(1+(x/y)^2)*1/y+1/√(x^2+y^2)*1/2√(x^2+y^2)*2x=y/(x
两边取e的指数:e^(x+y²+z)=(x+y²+z)/2对x求导:[e^(x+y²+z)]*(1+ðz/ðx)=(1+ðz/ðx
y-x^2>01-y-x>=0所以x^2
z=ln(x+y)az/ax=1/(x+y)所以az/ax|(1,1)=1/(1+1)=1/2
z=1/2*ln(x^2+y^2+4)Z'x=1/2*1/(x^2+y^2+4)*(2x)=x/(x^2+y^2+4)Z'y=1/2*1/(x^2+y^2+4)*(2y)=y/(x^2+y^2+4)所
若x,y,z∈[0,1],不妨设0≤x≤y≤z≤1,均值定理[√|x-y|+√|y-z|+√|z-x|]/3≤√[(|x-y|+|y-z|+|z-x|)/3]=√[(y-x+z-y+z-x)/3]=√