设函数z=sin(x-y),则dz|(0,0)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:31:18
设函数f(x,y,z)=yz^2 e^x,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则函数f(x,y,

df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0

求函数z=sinx+siny+sin(x+y)(0

z对x的偏导=cosx+cos(x+y)=0时,cosx=-cos(x+y)=cos(pi-x-y),所以x=pi-x-y.同理z对y的偏导=0时,有y=pi-x-y.所以x=y=pi/3.此时z=3

设z=f(x,y) 由方程sin z-xyz=0 所确定的具有连续偏导数的函数 ,求dz

设F(x,y,z)=sinz-xyz则F′(X)=-yzF′(y)=-xzF′(z)=cosz-xyz对x的谝导数等于-yz/(cosz-xy)z对y的谝导数等于-xz/(cosz-xy)dz=[-y

求函数z=(x+y)sin(x-y)的偏导数∂z/∂x,∂z/∂y

∂z/∂x只对x求导数,而把y看作一个常数,∂z/∂x=(x+y)'sin(x-y)+(x+y)sin(x-y)'=sin(x-y)+(x+y)cos(

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

设二元函数z=sin(x-y),求αz/αy,αy/αz,dz

∂z/∂x=cos(x-y)∂z/∂y=-cos(x-y)dz=∂z/∂x*dx+∂z/∂y*dy=co

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

.设z=z(x,y)由方程sin z=xyz所确定的隐函数,求dz.

先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-

设x=cosΦcosθ y=cosΦsinθ确定函数z=(x,y)求偏导数z对x 的偏导数

x^2+y^2+z^2=cos^2φcoc^2Θ+cos^2φsin^2Θ+sin^2φ=1.F=x^2+y^2+z^2Fx=2xFz=2zz对x的偏导数=一Fx/Fz=一x/z.

设函数 f(x)=sin(2x+y),(-π

f(x)=sin2(x+y/2)由于sin2x对称轴为π/4+kπ/2;故x+y/2=π/4+kπ/2x=π/4+kπ/2-y/2;将x=x=π/8代入,得y=π/4+kπ,根据y的范围可知:y=-3

设函数z=x+y/x-y 则dz=?

f(x)=z=x+y/x-ydz=fxdx+fydy=[[(x-y)-(x+y)]/(x-y)^2]dx+[[(x-y)+(x+y)]/(x-y)^2]dy=-2y/(x-y)^2dx+2x/(x-y

设函数Z=sin(x^2+y^2),则全微分dz=?

dz=Z'xdx+Z'ydy=2xcos(x^2+y^2)dx+2ycos(x^2+y^2)dy

设函数Z=sin(x^2 y^2),则全微分dz=?

再问:啊不好意思搞错了。。是z=e^(x^2+y^2),求dz,谢谢你帮我解答一下吧。。再答:

设函数z=z(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求证z对x的偏导加上z对y的偏导等于1

公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.

设K属于Z,函数y=sin(π/4+x/2)sin(π/4-x/2)的单调递增区间

y=sin(π/4+x/2)sin(π/4-x/2)=sin(π/4+x/2)sin[π/2-(π/4+x/2)]=sin(π/4+x/2)cos(π/4+x/2)=1/2sin(π/2+x)=1/2

设z是由方程z=sin(xz)+xy确定的函数,求z对x的二阶导数,x=0,y=1.

这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x

设函数z=sin(x^2y^2)+3x-5y^2+1,求dz

z=sin(x²y²)+3x-5y²+1所以δz/δx=cos(x²y²)*2xy²+3δz/δy=cos(x²y²)*

设k∈Z,函数y=sin(π/4+x/2) sin(π/4-x/2)的单调递增区间为

y=sin(π/4+x/2)sin(π/4-x/2)=-1/2(cosπ/2-cosx)=1/2(cosx)递增区间是x∈[2kπ+π,2(k+1)π]k∈Z

设函数y=3sin(2x+φ)(0

函数y=3sin(2x+φ)的对称轴是x=-φ/2+kπ/2,k是整数由π/3=-φ/2+π/4+kπ/2,0