设向量a,b均为单位向量,且(a+b)²=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:35:00
设a向量=(3,4),a向量⊥b向量,且b向量在x轴上的射影为2,则b向量为?

有没有word编辑器呀,这里头打数学符号太麻烦了!还有作图,更麻烦!我跟你说哈思路1:设出向量b=(x,y),做出a向量,因为是自由向量,所以向量的起点可放到原点,此时a向量与x轴的夹角设为∠1,ta

高数向量题设向量a,b,c为单位向量,且满足向量a+向量b+向量c=向量0,求a*b+b*c+c*a(都是向量).

∵a*b+b*c+c*a=a*(-a-c)+b*(-b-a)+c*(-c-b)=-1*3-(a*c+b*a+c*b)∴2(a*b+b*c+c*a)=-3∴a*b+b*c+c*a=-3/2

设向量a,b均为单位向量,且(a+b)²=1,则ab夹角为?

向量a,b均为单位向量,则有:|a|=1即:a²=1同理可得:b²=1

设向量a=(cosA,sinA),向量b=(cosB,sinB),且向量a-向量b=(-2/3,1/3),若C为向量a向

因为,向量a-向量b=(-2/3,1/3),所以,cosA-cosB=-2/3,sinA-sinB=1/3.把上面两个式子分别平方,然后相加.别忘了,sinA^2+cosA^2=1```整理得,cos

设向量abc是单位向量,且向量a乘以向量b=0.则[a-c][b-c]最小值为

向量abc是单位向量,则c^2=1,(a+b)^2=a^2+b^2+2a.b=2,所以|a+b|=√2,所以|a-c|.|b-c|=ab-(a+b).c+c^2=-(a+b).c+1≥-|a+b|.|

设a.b.c是单位向量,且a*b=0,则(a-c)*(b-c)的最小值为

由a*b=0及题设知,|a+b|=√(a+b)^2=√(a^2+b^2)=√2.==>c*(a+b)=|c|*|a+b|*cost.(t为向量c,与(a+b)的夹角)=√2cost.故有:-√2≤-c

已知三角形ABC中,O为平面内一点,且设向量OA=向量a,向量OB=向量b,向量OC=向量c

(向量a+向量b)•向量AB=(向量b+向量c)•向量BC=(向量c+向量a)•向量CA,——》(向量a+向量b)•(向量b-向量a)=(向量b+向量c

设向量a,b均为单位向量,且Ia+bI=1则a与b的夹角?

由向量a,b均为单位向量可知两向量模长均为1 字不怎么好看,将就下吧,

设O,A,B,C为平面上四个点,向量OA=向量a,向量OB=向量b,向量OC=向量c,且向量a+向量b+向量c=零向量,

Ca+b+c=0,a*b=b*c=c*a=-1,所以a*a=-a*(b+c)=2,|a|=√2同理|b|=√2,|c|=√2所以,|a|+|b|+|c|=3√2

设a,b,c是向量单位且a-b=c,则向量a,b的夹角

│a│=│b│=│c│a-b=c故a*a-2ab+b*b=c*c所以1-2*1*1cosa+1=1得到cosa=1/2所以a,b的夹角是π/6

设abc是单位向量,且a=b+c则向量ab的夹角为多少

∵向量a=b+c,∴a^2=(b+c)^2,即a^2=b^2+2b·c+c^2又a、b、c是单位向量,∴1=1+2b·c+1,∴b·c=-1/2设向量a、b的夹角为θ,则cosθ=a·b/|a||b|

向量a为单位向量,向量b不等于零,若向量a⊥向量b且|向量a-向量b|=3/2,则|向量b|=

可得a为单位向量,所以可得:|a|=1即:a^2=1向量a⊥向量b,所以可得:ab=0|a-b|=3/2两边平方得:a^2-2ab+b^2=9/41+b^2=9/4可得:b^2=5/4即:|b|=√5

设为a b是非零向量,且a向量和b向量垂直,则必有 ...

由【矩形对角线相等】可知,选B.

设向量a是以A(-1,2)为始点,且与向量b=(3,4)平行的单位向量,求向量a的终点坐标

设终点为B(x,y)则向量AB=(x+1,y-2),由条件列出两个方程:由平行条件得(x+1)/(y-2)=3/4~式1由单位向量长度为1得(x+1)^2+(y-2)^2=1~式2(解方程:由式1得(

设a,b,c是单位向量,且a=b+c,则向量a,b的夹角等于

以下(a.b)表示a点乘b.=========由已知,|a|=|b|=|c|=1,c=a-b.所以1=c^2=(a-b)^2=a^2-2(a.b)+b^2=2-2(a.b).解得(a.b)=1/2.所

设a,b,c是单位向量,且ab=0,则c(a+b)的最小值为

∵a,b,c,是单位向量,ab=1/2∴ab夹角为60°(a-c)(b-c)=ab-ac-bc+c=3/2-(a+b)ca+b的模为√3(a+b)c最大为√3(a

设向量a,b,c 是单位向量且向量a·b=0,则(向量a-c)·(向量b-c)的最小值为?

(a-c)(b-c)=a·b-a·c-b·c+c^2=-a·c-b·c+1=-c·(a+b)+1由于a、b垂直,且a、b都是单位向量,故a+b=根号2·a∴原式=-c·(根号2a)+1=|根号2a|·

若向量e1,向量e2是夹角为60度的两个单位向量,且向量a=向量e1,向量b=向量e1+向量e2,则向量a与向量b的夹角

1.几何法如插图,我用画图做的,很难看,请见谅2.代数法由已知,cos60°=e₁× e₂/| e₁| ×|e₂|&nbs

设向量a,b均为单位向量,且I2a+bI=根号3,求a,b夹

解题思路:数量积解题过程:,