设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:50:18
设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密

均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0

求教一道高数题,设D是由曲线y=√x,x+y=2和x轴所围成的平面区域,求D绕y轴旋转一周而成的旋转体的体积V

先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,

计算由曲线y=x^2与x+y+2所围成的平面区域的面积急

由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-

求均匀薄片的质心,薄片所占闭区域为D,D是由y=1-x^2与y=2x^2-5所围成的闭区域,

算出y=1-x^2y=2x^2-5方程组的焦点,画图,看他们围成的区域对区域使用求质心的公式进行计算再问:�鷳�������̡�лл��

设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy

第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2

设空间闭区域Ω由曲面z=a2-x2-y2与平面z=0所围成,Σ为Ω的表面外侧,V为Ω的体积.证明:∯Σ

证明:由高斯公式,有左边积分=∭Ω(2xyz2−2xyz2+1+2xyz)dxdydz=V+2∭Ωxyzdxdydz   ∵∭Ωxyzdxdydz=∫2π0sinθcos

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

高数二重积分题 求下列给定区域体积由XOY平面与z=2-x^2-y^2所围成的有界区域

二重积分再问:请问能否解释下你的解题思路我不是很会再答:第一个等号:二重积分计算体积;第二个等号:二重积分坐标变换;第三个等号:二重积分化累次积分;第四个等号:。。。

平面薄片所占的闭区域D由直线x+y=2,y=x,y=0 所围成,它的面密度u(x,y)=x+2y.

x+y=2与y=x的交点P(1,1),(1)薄皮质量M=∫∫u(x,y)dxdy=∫dy∫(x+2y)dx=∫dy[x^2/2+2yx]=∫(2+2y-4y^2)dy=[2y+y^2-4y^3/3]=

原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.

先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:

设x,y满足5x+3y≤15,x-y≥-1,x-5y≤3.(2)求由x,y的约束条件所表示的平面区域的面积;

做出直线的图就可以得到可行域,面积先将它补成矩形,再用矩形面积减去多算的三角形面积.至于最小值,找出可行域内到(-3,1)距离最小的点就可以了

设D是由抛物线Y=1-x^2和X轴,y轴及直线X=2所围成的区域的面积及D绕X轴旋转所得旋转体的体积

约定一下:用S代替积分号,本题的积分下限为0,上限为2体积=Sπ(1-x^2)^2dx=πS(1-2x^2+x^4)dx=π(x-2x^2/3+x^5/5)|(下:0,上:2)=π(2-8/3+32/

设抛物线y^2=4x与直线y=x+1所围成的平面区域D,求D的面积和D绕x轴旋转一周形成的旋转体的体积

题目有问题,应当是二者和轴所围的区域.S=∫₀¹(x+1-2√x)dx=(x²/2+x-2*(2/3)x√x)|₀¹=1/2+1-4/3=1/6V

高数二重积分题!一个平面薄片所占的区域由不等式│x│+│y│≤1所确定,其上每一个点的面密度为f(x,y)=│x│+│y

由于积分区域关于x,y轴都对称,而被积函数关于x,y都是偶函数,所以原积分=4∫∫(x+y)dxdy,此积分的积分区域为x轴y轴和x+y=1所围区域,积分=4∫dx∫(x+y)dy,其中y积分限0到1

设D是xoy平面上由直线y=1,2x-y+3=0与2x-y-3=0所围成的区域,求∫∫(2x-y)dxdy.

先积y,∫∫(2x-y)dxdy=∫[0→1]dx∫[3-x→2x+3](2x-y)dy=∫[0→1][2xy-(1/2)y²]|[3-x→2x+3]dx=∫[0→1][2x(2x+3)-(

设平面区域D是由y=lnx,x轴,直线x=e所围.求D的面积及绕X轴旋转的体积V

所求面积=∫lnxdx=(xlnx)│-∫dx(应用分部积分法)=(e-0)-(x)│=e-(e-1)=1;所求体积=∫πln²xdx=π[(xln²x)│-∫2lnxdx](应用

计算二重积分∫∫x平方ydб,是由抛物线y平方= x及直线y=x-2所围成的闭区域

二重积分化为二次积分时,确定积分限是一个关键.由已知条件得,积分区域为x∈[1,4],y∈[-1,2]   先对x积分再对y积分,(如先对y积分后对x积分,区域要分二部分

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0