设广义积分f(x)dx收敛,xf(x)在单调递减.求证:lim xf(x)lnx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:12:58
求出原函数:原函数是(lnx)^(1-k)/(1-k).当k不等于1时.k=1时原函数是lnlnx.很显然k=1时积分不收敛.当k>1时,(lnx)^(1-k)当x趋于正无穷时趋于0,因此积分收敛.当
先分部积分∫a^xx^2dx=(1/lna)∫x^2da^x=a^xx^2/lna-(1/lna)∫a^x2xdx=a^xx^2/lna-(1/lna)^2∫2xda^x=a^xx^2/lna-(1/
收敛,广义积分值为0,不用计算,利用对称性即可,因为被积函数是奇函数,积分上下限关于原点对称,根据定积分定义,x轴正半轴曲线下面积永远等于x轴负半轴曲线下面积,且符号相反,因此二者之和恒为0.请采纳,
k=-1显然发散, k不等于-1时广义积分dx/x(lnx)^k在2到正无穷上=1/(k+1)(lnx)^(k+1)在k
∫e+∞1\x(lnx)^2dx=∫e+∞1\(lnx)^2dlnx=-1/lnx\e,+∞=-0+1/1=1所以收敛.
∫(上限为正无穷,下限为e)1/x*(lnx)^kdx=∫1/(lnx)^kdlnx(x上限为正无穷,下限为e)=1/(1-k)∫d(lnx)^(1-k)(x上限为正无穷,下限为e)=[1/(1-k)
变量替换,令x^2=t,x=t^(1/2),dx=0.5dt/t^(1/2)原积分=0.5积分(从1到无穷)sintdt/t^(1/2),注意到sint的部分积分有界,t^(1/2)是递减趋于0的函数
如图.另一方面,从t=x-(1/x)的图像上看,x=0处无定义,图像分左右支.反解后相当于求反函数(关于直线t=x做对称),于是原来的右支变为恒大于零,左支恒小于零.所以书上的证明是对的.
反证,假设limf(x)不等于0,不妨设limf(x)=b,b>0由极限的保号性和有界性可知,存在X,存在c,0cf(x)dx=f(x)dx[x从a到X]+f(x)dx[x从X到正无穷大]前一部分为定
Unexpectedlyonlymecanhelpyou?Don'tmindIsayEnglish.LetN=∫(e→+∞)f(x)dx,sincethisintegralisconvergent,i
首先不定积分∫x^(2-p)dx=1/(3-p)*x^(3-p),p不等于3而p=3时,∫x^(2-p)dx=∫x^(-1)dx=lnx,代入下限0不是收敛的积分收敛的话,那么代入上限1不会有问题,代
1是瑕点,q=1时发散.这时必须记住的一个广义积分.很多很多广义积分的判别都以它为根据.再问:那能不能说一说解题过程啊?答案我也有再答:原函数是(x-1)^(1-q)/(1-q),当x趋于1时,当q1
令√x=tx=t^2,dx=2tdtx=0,t=0,x=+∞,y=+∞∫[0,+∞)e^(-√x)dx=∫[0,+∞)e^(-t)*2tdt=-∫[0,+∞)2tde^(-t)=-2te^(-t)[0
∫[2,+∞]1/(1-x^2)dx=1/2∫[2,+∞][1/(1-x)-1/(1+x)]dx=-1/2∫[2,+∞][1/(1+x)-1/(x-1)]dx=-1/2[ln(1+x)-ln(x-1)
∫∞1/xlnxdx=∫∞1/lnxd(lnx)=ln(lnx)∣[e,+∞]=+∞
如下图,望采纳
根据柯西判别法,a>2的时候收敛,a
这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2