设方阵a满足a^2 a 2e 0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:52:06
哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......
证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.
A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,
移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O
因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.
A^2-A-2i=A^2-A*I-2I=(A-I)*(A)-2I=0所以(A-I)*(A/2)=I所以A-I的逆为A/2
证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)
A^-1=A+E,(A+2E)^-1=E-A.-----------------------------利用矩阵多项式总结一个类似题目的做法:引入多项式f(x)=x^2+x-1,g(x)=x,h(x)
A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我
A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB
证明:∵A^2-2A+3E=0∴A^2-3A+A-3E+6E=0A(A-3E)+(A-3E)=-6E(A-3E)(A+E)=-6E∴|(A-3E)(A+E)|=|A-3E||A+E|=|-6E|≠0∴
由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|
因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-
由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).
A^2-A-2I=OA(A-I)=2I所以A可逆A^-1=1/2(A-I)
证:由A²-A-2I=0得A(A-I)=2I即A(A-I)/2=I所以A可逆,且A^(-1)=(A-I/2由A²-A-2I=0得(A+2I)(A-3I)=-4I即(A+2I)(A-
由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.