设等差数列an与bn的前n项分别为sn9 sn9;且sn sn=7n 2 n 3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:03:19
(1)∵S1=23(b1−1)=b1,∴b1=-2,又S2=23(b2−1)=b1+b2=−2+b2,∴b2=4,∴a2=-2,a5=4,(2分)∵an为一等差数列,∴公差d=a5−a23=63=2,
An=[2n/(3n+1)]BnAn-1=[2n/(3n+1)]Bn-1lim(n→∞)an/bn=lim(n→∞)[An-An-1]/[Bn-Bn-1]=lim(n→∞)[2n/(3n+1)][Bn
因为{an}是等差数列,所以2a7=a6+a8,2b7=b6+b8即S13=13a7,S`13=13b7所以a7/b7=S13/S`13=(7*13+2)/(13+3)=93/16
(1)S5=5a1+10d=5+10d=45,d=4,a3=1+2d=9.T3=b1+b2+b3=1+q+q^2=9-q,则q=-4或q=2.因为q>0,所以q=2.{an}的通项公式为:an=1+4
设数列{bn}的前n项和为Sn,且Sn=1-bn/2;数列{an}为等差数列,且a6=17,a8=23,1,求bn的通项公式2,若cn=anbn(n=1,2,3,...),Tn为数列cn的前n项和,求
设等差数列的等差为d,等比数列的等比是q,由a3=b3,得a4-d=b4q,又∵a4=b4,∴a4-a4q=d,∵S5-S3T4-T2=7,∴a5+a4b4+b3=a4+d+a4a4+a4q=7,即3
a2a3a4=15则a3=5a4=(59)÷2=7则公差d=2则a2=3,a1=1,an=2n-1bn=根号3×(1an)bn=2n×根号3b1=2根号3,b2=4根号3,b3=6根号3,则公差d=2
等差数列,所以an=a1+(n-1)dy由a2=9,a5=21,可以根据上面的式子算出a1=5,d=4所以an=4n+1所以bn=2^4n+1bn+1/bn=2^4(n+1)+1/2^(4n+1)=2
设等差数列的等差为d,等比数列的等比是q则a3=b3a4-d=b4/q又∵a4=b4∴a4-d=a4/qa4-a4/q=d∵(S5-S3)/(T4-T2)=5∴(a5+a4)/(b4+b3)=(a4+
在等差数列{an}中,a1+a3=6,a11=21,可解得a1=1,d=2.∴an=2n-1∴bn=1/n(an+3)=1/[n(2n+2)]=[(1/n)-1/(n+1)]/2∴Sn=b1+b2+.
∵{an}为等差数列,其前n项之和为Sn,∴S2n-1=(2n−1)(a1+a2n−1)2=(2n−1)×2an2=(2n-1)•an,同理可得,S′2n-1=(2n-1)•bn,∴anbn=S2n−
1.由公式S(2n-1)=(2n-1)[a1+a(2n-1)]/2而由等比数列的性质a1+a(2n-1)=an+an=2an∴S(2n-1)=(2n-1)*an即an=[S(2n-1)]/(2n-1)
S(2n-1)=(A1+A(2n-1))×(2n-1)/2=(A1+A1+(2n-2)d)×(2n-1)/2=(A1+(n-1)d)×(2n-1)=An×(2n-1)同理T(2n-1)=Bn×(2n-
答:1设an,bn的公差分别为d1,d2,Sn=na1+n(n-1)d1/2,Tn=nb1+n(n-1)d2/2,令S(n+3)=(n+3)a1+(n+3)(n+2)d1/2=Tn=nb1+n(n-1
a(n+1)=2an+2^na(n+1)/2^n=2an/2^n+1a(n+1)/2^n=an/2^(n-1)+1a(n+1)/2^n-an/2^(n-1)=1,为定值.a1/2^(1-1)=1/1=
S5+S3=3a3+3a2=21所以a3+a2=7a3b3=a3*(1/s3)=a3/3a2=1/2上式可以求出a1和等差数列Sn的公差,即求出Sn,则就求出bn了.以后要送点分,不然下次不回答了
s(n+1)-sn=5/6(n+1)(n+4)-5/6n(n+3)=5/6(n²+5n+4-n²-4n-3)=5/6(n+1)=5/6n+5/6所以an是等差数列
设Sn=k(7n^2+n)an=Sn-S(n-1)=k(14n-6)Tn=k(4n^2+27n)bn=Tn-T(n-1)=k(8n+23)an:bn==(14n-6)/(8n+23)再问:错·再答:哪
S10=(a5+a6)*10/2=-40,因此a6=-5,那么公差d=a6-a5=-2,所以通项an=a5+(n-5)d=7-2n.由于bn=an+2^an=(7-2n)+2^(7-2n),是一个等差