设级数an收敛,且limn趋于无穷nan=a,证明级数n(an-an 1)收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:46:11
级数an的平方收敛,an>0,求证级数an除以n收敛

这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n

级数an^2收敛,证明级数an除以n收敛(an>0)

利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

设级数∑(an)^2收敛 则级数∑an/n是收敛还是发散

若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因

请教题高数级数证明题设级数Eun和Evn均收敛,且un

正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

设级数∑an、∑bn均收敛,则它们的柯西乘积是否收敛?

不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn

高等数学 级数证明题已知级数∑an和∑cn都收敛,且有∑an

这题题目错了.既然题目里面没有说∑an的极限和∑cn的极限相等,又没有说an、bn、cn都大于零之类的条件,是不能判断收敛性的,有可能出现∑bn是震荡的而不是收敛的.

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+

设an>0,证明级数an/[(a1+1)(a2+1)...(an+1)]收敛?

其实只要裂项就可以了,然后利用单调有下界的正数列必有极限就可以证明了,具体的办法见图中所示:

级数a2n-1+a2n收敛 且 liman=0,证级数an收敛

Sn是级数的部分和,则S(2n)有极限,记为limS(2n)=s.于是limS(2n+1)=limS(2n)+a(2n+1)=limS(2n)+lima(2n+1)=s.故级数收敛.

一道级数题,题目如图,设an=积分……,证明级数收敛于1

我目测没有其他人回答了~~我给出一种很简单的做法,楼主可以对比一下.望及时采纳~~

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^