设级数Un²收敛,证明级数Un n也收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:28:25
若级数Un收敛,Un^2是否敛散性如何?

果断收敛啦用比较判别法很容易得出结论的

如果级数Un收敛,1/Un的敛散性?

(级数收敛则通项必趋于零)Un收敛则Un趋于0,则1/Un不可能趋于0(否则1=Un*(1/Un)趋于0,矛盾),所以1/Un一定发散

设正项级数∑Un收敛,数列{Vn}有界,证明级数∑UnVn绝对收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

设正项级数∑Un发散,Sn是Un的部分和数列,证明级数∑Un/Sn^2收敛.

正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2

证明级数收敛 Un=n/((ln n)^n)

你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛

请教题高数级数证明题设级数Eun和Evn均收敛,且un

正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛

∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

设级数∑un收敛,证明∑(un+un+1)也收敛

这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

若级数Un收敛于s 则级数(un+un+1)收敛于

由   ∑(n>=1)u(n)=s,可得   ∑(n>=1)[u(n)+u(n+1)]  =∑(n>=1)u(n)+∑(n>=1)u(n+1)  =2s-u(1).再问:(Un+Un+1)=(u1+u

若级数∑Un收敛于S,级数∑【un+un+1】则收敛于

∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始

级数un收敛 那么级数un^2-un+1^2收敛吗

发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u

设数列{Un}收敛于a,则级数(Un-U(n-1))=?)

应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

设数列{un}收敛于a,则级数(un-u(n-1))=?)

∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-

级数un是收敛还是发散

这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/

设数列un收敛于S,则级数un+1-un收敛于

lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0