设随机变量X服从区间(0,π)上的均匀分布,Y=sinX
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:42:05
(1)f(x)=1/(b-a)=1/4P{-0.5
我把解答写在图片里面,请参考图片
(1)由已知,f(x)=1,(0
做出这个效果很辛苦,
这种涉及均匀分布的问题画图来解决是比较方便的首先,(x,y)服从二维均匀分布,密度函数是面积的倒数,即1/a^2P{Z
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
因为G是由x
随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0
1x的概率密度为f(x)=1/(0.2-0)=5,0x)25e^(-5y)dy=1/e
/>1)X在(0,2)上均匀分布,所以X的密度函数是:通过积分可以求出X的分布函数:2)可以利用密度函数求出这个概率,也可以利用分布函数,以下为步骤,结果是0.5:3)我们可以把Y写成X的函数,Y=g
没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-
概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.
F(y)=P(Y=e^(-y/2))=1-P(x
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X
P{2X+4≤10}=P{X≤3}=F(3)=(3-0)/(5-0)=3/5
0.52x+(118-x)*0.33=53