证明 lim n→∞ n a的n次方=0(a>1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:29:07
求下列数列极限(1)limn→∞2n^3-n+1/n^3+2n^2;(2)limn→∞(-2)^n+3^n/(-2)^n

limn→∞2n^3-n+1/n^3+2n^2=2,方法:分子、分母同时除n的最高次n^3;(2)limn→∞(-2)^n+3^n/(-2)^n+1+3^n+1=-1/2方法:分子、分母同时除(-2)

求极限limn→∞(n-1)^2/(n+1)

典型的数列极限,n表示项数,只是取值1、2、3……,所以该题答案是+∞.关于n的问题,在高等数学有这种取正整数的默认,一般在题目中不作声明,且在高等数学中n几乎都是这种用法.所以答案没有错误.不用声明

用夹逼定理证明limn!/2^n=0

很明显,他的极限不是零啊,是不是lim2^n/n!=0啊?证明:2^n/n!>0/n!=0;2^n/n!=2*2*2*……2/n!

求limn→∞ n次根号下(2+sin²n)的极限

再问:不符合迫敛性啊,左边的极限是√2右边的极限是√3再答:n趋于无穷时,任何有限值的n次方根极限都是1。

求证明limn趋向无穷n!的平方分之n的平方等于零?

很简单,N!分之一是更高阶的无穷小

求极限:limn→∞(n-1)^2/(n+1)

等于无穷.分子为二次,分子一次.再问:劳驾您说细点我听不懂再答:这种类型的极限,分子和分母都是多项式的,如果分子的次数高,那么极限为无穷,分母的次数高极限就是0.如果分子分母次数一样高,那么极限就是分

limn→∞(1+1/n)^n=e

这个问题很难的数学专业也一般不会考这个证明的啊这是个很重要的结论个人认为一般记住结论就可当然也要活用本人就是学数学专业的不过一般的数学分析书上对这个问题都做了一定的证明不过想看明白不是一件简单的事情~

用极限定义证明:limn→正无穷(根号下n+1-根号下n)=0

对任给的ε>0(ε1/(2ε)^2,于是,取N=[1/(2ε)^2]+1,则当n>N时,有    |√(n+1)-√n|根据极限的定义,成立    lim(n→inf.)[√(n+1)-√n]=0.

证明limn→∞2的n次方减1除以3的n次方等于0

分子分母上下同时除以3的n次方,(2/3)的n次方极限=0,1/3^n极限=0,所以=0

limn→∞(√(n+1)-√n)√n,求·极限

添上分母1,然后分子分母同乘以√(n+1)+√n,化为√n/[√(n+1)+√n],然后分子分母同除以√n,化为1/[√(1+1/n)+1],取极限得原式=1/(1+1)=1/2.

数列{an}的前n项和记为Sn,已知an=5Sn-3(n∈N)求limn→∞

由Sn=a1+a2++an知an=Sn-Sn-1(n≥2),a1=S1,由已知an=5Sn-3得an-1=5Sn-1-3.于是an-an-1=5(Sn-Sn-1)=5an,所以an=-14an-1.由

大学微积分 分析定义证明limn/n+1 =1(n趋近无穷大)

学极限的话应该知道有一个伊布西龙——N定义,其实就是极限的定义.你的这道题就是标准的定义形式.你不是之前找了一个N吗?当n>N时,也就是n>1/&时,1/n

求limn→∞((3^n+2^n)/(3^(n+1)-2^(n+1)))的极限

新年好!HappyChineseNewYear!1、本题是无穷大除以无穷大型不定式;2、由于本题的分子分母都不是连续函数,罗毕达求导法则不能适用;3、本题的解答方法是:  &nbs

limn→∞

当1<i<n时,有1n2+n+n<1n2+n+i<1n2+n+1故1+2+…+nn2+n+n<ni=1in2+n+i<1+2+…+nn2+n+1又:limn→∞1+2+…+nn2+n+n=limn→∞

limn→∞n√(1+1/n)(1+2/n)...(1+n/n)等于多少?

取对数,ln原式=lim(n→∞)1/n(ln(1+1/n)+ln(1+2/n)+...+ln(1+n/n))=∫(0→1)ln(1+x)dx=∫(0→1)ln(1+x)d(1+x)=(1+x)ln(

1.设X1>a>0,且Xn+1=根号aXn(n=1,2,……),证明limn→∞Xn存在,并求此极限值

1.x(n+1)=√(axn)先证xn有下界:猜想xn>a利用数学归纳法:x1>a假设,当n=k,xk>a则,当n=k+1,x(k+1)=√(axk)>a故,数归成立,xn>a再证xn单调递减:x(n