证明:f(x,y)=xy在(0,0)处连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:52:41
证明函数f(x,y)=xy/(x+y)在(0,0)点极限不存在.

极限存在的条件是(x,y)以任何方式靠近(0,0)极限都相等所以证明极限不存在就是找两种不同的方式,使得极限不相等证明如下:取x=y,f(x,y)=x^2/2x=x/2显然极限=0/2=0又取x=-y

一道高数题,求高手指教.f(x)在x>0有定义,在x=1处可导,f(xy)=yf(x)+xf(y).证明f'(x)在x>

由于在x=1处可导,所以【f(1+t)-f(1)】/t当t趋于0是极限存在等于f'(1);对于任意点x>0,f(x+t)=f{(1+t/x)x}=xf(1+t/x)+(1+t/x)f(x)=f(x)+

证明函数x^2+y^2≠0时,f(x,y)=sin(xy)/√(x^2+y^2),x^2+y^2=0时f(x,y)=0在

注意:∫∫f(x,y)dxdy其实是一个常数,设a=∫∫f(x,y)dxdy则:f(x,y)=[1-(x^2+y^2)]^0.5-πa/8两边做二重积分得:∫∫f(x,y)dxdy积分区域为:x

f(x)在R上有定义,f(x+y)=f(x)+f(y)+2xy,证明若f'(0)存在,则函数在任一点都可导,并求f'(x

证明:令x=y=0,则:f(0+0)=f(0)+f(0)+2*0*0,即f(0)=0对R上任何一点x,不放假设T为其上一个微小的偏移量,T->0,有:f(x+T)-f(x)=f(x)+f(T)+2*x

已知函数f(x)的定义域为x>0,当x>1时,f(x)>0且满足f(xy)=f(x)+f(y) 证明其在定义域上是增函数

因为f(xy)=f(x)+f(y)所以f(xy)-f(x)=(y)在定义域内设两个量x1,x2,且x10所以x2-x1>0;f(x2)-f(x1)>0所以f(x)2为增函数

设有函数f(x),x>0对任何x和y>0都有f(xy)=f(x)+f(y),且f(1)的导数存在,证明f(x)在x>0上

f(x)=f(1*x)=f(1)+f(x),即f(1)=0f(x+Δx)-f(x)=f[x(1+Δx/x)]-f(x)=f(x)+f(1+Δx/x)-f(x)=f(1+Δx/x)故x>0时lim[f(

f(xy)=f(x)+f(y),证明f(x/y)=f(x)-f(y)

证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)

定义在(0,+∞)上增函数f(x),恒有f(xy)=f(x)+f(y),f(log2x)

第一问,这个是要做题经验试的,单调增函数,关键要找到f(x)=0的那点.f(1*1)=f(1)=f(1)+f(1),推出f(1)=0,所以f(log2x)

函数f(x)定义域R且为增函数,f(xy)=f(x)+f(y)证明f(x/y)=f(x)-f(y)

令x=y=1得f(1)=0令y=1/x得f(x*1/x)=f(x)+f(1/x)=0即f(1/x)=-f(x)所以:f(x/y)=f(x*1/y)=f(x)+f(1/y)=f(x)-f(y)

已知函数f(x)是定义在(0,正无穷)的增函数,且f(xy)=f(x)+f(y),1、证明f(x/y)=f(x)-f(y

1当x=y=1时,f(1)=f(1)+f(1),则f(1)=0;∴当y=1/x时,有f(1)=f(x)+f(1/x)=0;∴f(1/x)=-f(x)令y=1/t,则f(xy)=f(x/t)=f(x)+

高数!简单的证明题!证明:函数F(x,y)=xy^2/(x^2+y^4)当(x,y)-->(0,0)时极限不存在.

LZ快乐男孩的做法是错误的,虽然分母极限为0,但分子的极限也为0,这种属于0/0型的极限,这种极限可能存在,也可能不存在.实际上这是一道比较简单的题目.只要找到两条不同的路径->(0,0)得出的极限值

已知函数f(x)满足对于任何实数x,y总有f(xy)-f(x)=f(y)[xy不得0】,证明f(x/y)=f(x)-f(

因为f(xy)-f(x)=f(y)所以f(xy)=f(x)+f(y)所以f(x*y/x)=f(x)+f(x/y)即f(y)=f(x)+f(x/y)所以f(x/y)=f(x)-f(y)

证明当x,y趋于0时,f(x,y)=xy/x+y的极限不存在.

点(x,y)沿平面直线y=x趋于(0,0)的情形lim(x→0,y=x)[xy/(x+y)]=lim(x→0)(x²/2x)=0点(x,y)沿平面直线y=-x趋于(0,0)的情形lim(x→

对于任意xy 有f(x+y)=f(x)f(y)且x>0,f(x)>1,证明f(x)在R上为增函数

f(0)=[f(0)]^2∴f(0)*[f(0)-1]=0解得:f(0)=0或f(0)=1∵当x>0时,f(x)=f(x)*f(0)>1∴f(0)≠0∴f(0)=1f(0)=f(x-x)=f(x)*f

设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1

令x=y=0f(0)=f(0)×f(0)f(0)不等于0,f(0)=1令y=0f(0)=f(x)×f(0)f(x)=1

已知x∈(0,+∞),f(xy)=f(x)·f(y),当x>1时,f(x)>1,证明f(x)>0

取x∈(0,1),那么1/x∈(1,+∞)又f(1/x)=f(1)f(1/x),那么f(1)=1而f(1)=f(x)f(1/x)则f(x)=1/f(1/x)∈(0,1)综上可得x∈(0,+∞)时,f(

已知xy>0,证明xy+xy/1+x/y+y/x>=4

xy+1/xy>=2√(xy*1/xy)=2(当xy=1/xy即xy=1时取等号)x/y+y/x>=2√(x/y*y/x)=2(当x/y=y/x即x=y取等号)当x=y=1时可以同时满足两项的等号要求

如果函数f(x)的定义域为(0,+∞)且在(0,+∞)上是增函数,f(xy)=f(x)+f(y).证明f(x/y)=f(

因为f(1*1)=f(1)+f(1)所以f(1)=0又f(y)*f(1/y)=f(y)+(f1/y)=f(1)=0所以-f(y)=f(1/y)所以f(x/y)=f(x)+f(1/y)=f(x)-f(y

已知函数f(x)的定义域为(0,正无穷),当x>1时,f(x)>0,且f(xy)=f(x)+f(y).证明f(x)在定义

对任意X,Y>0,设X1,所以f(Y/X)>0,所以f(x)在定义域上为增函数

有一题,f(-1)=0 f(1)=0 ,但证明出来函数是奇函数.为什么 f(xy)=y*f(x)+x*f(y)

令x=y=1原式变为f(1)=f(1)+f(1)=2f(1)=>f(1)=0令y=-1代入f(-x)=-f(x)+xf(-1)f(-1)=0所以有f(-x)=-f(x)所以f(x)为奇函数证毕