证明:f(x,y)=xy在(0,0)处连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:52:41
极限存在的条件是(x,y)以任何方式靠近(0,0)极限都相等所以证明极限不存在就是找两种不同的方式,使得极限不相等证明如下:取x=y,f(x,y)=x^2/2x=x/2显然极限=0/2=0又取x=-y
由于在x=1处可导,所以【f(1+t)-f(1)】/t当t趋于0是极限存在等于f'(1);对于任意点x>0,f(x+t)=f{(1+t/x)x}=xf(1+t/x)+(1+t/x)f(x)=f(x)+
注意:∫∫f(x,y)dxdy其实是一个常数,设a=∫∫f(x,y)dxdy则:f(x,y)=[1-(x^2+y^2)]^0.5-πa/8两边做二重积分得:∫∫f(x,y)dxdy积分区域为:x
证明:令x=y=0,则:f(0+0)=f(0)+f(0)+2*0*0,即f(0)=0对R上任何一点x,不放假设T为其上一个微小的偏移量,T->0,有:f(x+T)-f(x)=f(x)+f(T)+2*x
因为f(xy)=f(x)+f(y)所以f(xy)-f(x)=(y)在定义域内设两个量x1,x2,且x10所以x2-x1>0;f(x2)-f(x1)>0所以f(x)2为增函数
f(x)=f(1*x)=f(1)+f(x),即f(1)=0f(x+Δx)-f(x)=f[x(1+Δx/x)]-f(x)=f(x)+f(1+Δx/x)-f(x)=f(1+Δx/x)故x>0时lim[f(
证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)
第一问,这个是要做题经验试的,单调增函数,关键要找到f(x)=0的那点.f(1*1)=f(1)=f(1)+f(1),推出f(1)=0,所以f(log2x)
令x=y=1得f(1)=0令y=1/x得f(x*1/x)=f(x)+f(1/x)=0即f(1/x)=-f(x)所以:f(x/y)=f(x*1/y)=f(x)+f(1/y)=f(x)-f(y)
1当x=y=1时,f(1)=f(1)+f(1),则f(1)=0;∴当y=1/x时,有f(1)=f(x)+f(1/x)=0;∴f(1/x)=-f(x)令y=1/t,则f(xy)=f(x/t)=f(x)+
LZ快乐男孩的做法是错误的,虽然分母极限为0,但分子的极限也为0,这种属于0/0型的极限,这种极限可能存在,也可能不存在.实际上这是一道比较简单的题目.只要找到两条不同的路径->(0,0)得出的极限值
因为f(xy)-f(x)=f(y)所以f(xy)=f(x)+f(y)所以f(x*y/x)=f(x)+f(x/y)即f(y)=f(x)+f(x/y)所以f(x/y)=f(x)-f(y)
点(x,y)沿平面直线y=x趋于(0,0)的情形lim(x→0,y=x)[xy/(x+y)]=lim(x→0)(x²/2x)=0点(x,y)沿平面直线y=-x趋于(0,0)的情形lim(x→
f(0)=[f(0)]^2∴f(0)*[f(0)-1]=0解得:f(0)=0或f(0)=1∵当x>0时,f(x)=f(x)*f(0)>1∴f(0)≠0∴f(0)=1f(0)=f(x-x)=f(x)*f
令x=y=0f(0)=f(0)×f(0)f(0)不等于0,f(0)=1令y=0f(0)=f(x)×f(0)f(x)=1
取x∈(0,1),那么1/x∈(1,+∞)又f(1/x)=f(1)f(1/x),那么f(1)=1而f(1)=f(x)f(1/x)则f(x)=1/f(1/x)∈(0,1)综上可得x∈(0,+∞)时,f(
xy+1/xy>=2√(xy*1/xy)=2(当xy=1/xy即xy=1时取等号)x/y+y/x>=2√(x/y*y/x)=2(当x/y=y/x即x=y取等号)当x=y=1时可以同时满足两项的等号要求
因为f(1*1)=f(1)+f(1)所以f(1)=0又f(y)*f(1/y)=f(y)+(f1/y)=f(1)=0所以-f(y)=f(1/y)所以f(x/y)=f(x)+f(1/y)=f(x)-f(y
对任意X,Y>0,设X1,所以f(Y/X)>0,所以f(x)在定义域上为增函数
令x=y=1原式变为f(1)=f(1)+f(1)=2f(1)=>f(1)=0令y=-1代入f(-x)=-f(x)+xf(-1)f(-1)=0所以有f(-x)=-f(x)所以f(x)为奇函数证毕