证明sin(x^2 y^2)一致连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:21:37
证明:函数f(x)=sin(x)/x在(0,1)上是一致连续的

定义g(x)如下g(0)=1g(x)=f(x)=sinx/x(0

证明函数f(x)=(sinx)^2在(‐∞,+∞)上是一致函数,g(x)=sin(x^2)在×(-∞,+∞)上不是一致函

说的应该是“一致连续”.  证明  (1)注意到  |[(sinx1)^2]-[(sinx2)^2]|=|sinx1-sinx2|*|sinx1+sinx2|  0,取δ=ε/2>0,对任意的x1,x

证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx

[sin(2x+y)/sinx]-2cos(x+y)={[sin(x+y)cosx+cos(x+y)sinx]/sinx}-2cos(x+y)={[sin(x+y)cosx+cos(x+y)sinx-

一道关于数学三角函数的题,哪位数学好的朋友帮哈忙,谢 证明sin(x+y)-sinx=2cos((2x+y)\2)sin

sin(x+y)-sinx=sinxcosy+cosysinx-sinx2cos((2x+y)\2)sin(y\2)=2cos(x+y/2)sin(y/2)=2[cosxcos(y/2)-sinxsi

三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z

【证明】首先必须了解和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2](1)sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2](2)cosα+c

证明sin(x+y)sin(x-y)=(sinx)^2-(siny)^2.

sin(x+y)sin(x-y)=-1/2(cos(x+y+x-y)—cos(x+y-x+y))=-1/2(cos2x—cos2y)=-1/2(1-2(sinx)^2-1+2(siny)^2)=(si

sin(x+y)-sinx=2cos(x+1/2y)sin(1/2y)的详细证明步骤.

这个是和差化积公式如没学过,可以这样sin(x+y)-sinx=sin[(x+1/2y)+1/2y]-sin[(x+1/2y)-1/2y]=sin(x+1/2y)cos(1/2y)+cos(x+1/2

证明sin(x+y)sin(x-y)=sinx-siny

sin(x+y)sin(x-y)=-1/2(cos(x+y+x-y)—cos(x+y-x+y))=-1/2(cos2x—cos2y)=-1/2(1-2(sinx)^2-1+2(siny)^2)=(si

请问,如何证明sinx+siny=2*sin(x+y/2)*cos(x-y/2)

设A=(X+Y)/2,B=(X-Y)/2X=A+B,Y=A-BSINX=SIN(A+B)=SINACOSB+COSASINBSINY=SIN(A-B)=SINACOSB-COSASINBSINX+SI

判断函数y=lg[sinx++√(1+sin^2x)]的奇偶性并证明

奇函数.f(x)=lg[sinx+√(1+sin^2x)]因为[-sinx+√(1+sin^2x)]×[sinx+√(1+sin^2x)]=1,所以,-sinx+√(1+sin^2x)=1/[sinx

如题用反证法证明y=sin(x^2)和y=cos(根号下x)不是周期函数,形如:

周期为T的函数满足:f(x)=f(x+T)1、如果y=sin[x^2]是周期函数,设最小正周期为T则:sin[x^2]=sin[(x+T)^2]x^2=(x+T)^2+2kπ化简得:2Tx+T^2+2

证明COS(X+Y)COS(X-Y)=COS^2X-SIN^2Y

COS(X+Y)COS(X-Y)=(COSX*COSY-SINX*SINY)(COSX*COSY+SINX*SINY)=(COSX*COSY)^2-(SINX*SINY)^2=COS^2X(1-SIN

一道三角恒等式证明题请证明sin(x+y)sin(x-y)=sin^2(x)-sin^2(y)

左边=(sinxcosy+cosxsiny)(sinxcosy-cosxsiny)=sin²xcos²y-cos²xsin²y=sin²x(1-sin

怎么样证明函数f(x)=sin(x^2)的不是一致连续的?

f(x)=sin(x^2)=(1-cos2x)/2因为cos2x在R上可以取得唯一对应值,所以(1-cos2x)/2在r上可以是可以取得唯一对应值的,持续的.

怎么求y=sin|x/2|的周期性?用定义法证明.

当x≥0时,sin|x/2|=sin(x/2),而sin(x/2)的最小正周期为4π;当x<0时,sin|x/2|=sin(-x/2)=-sin(x/2),-sin(x/2)的最小正周期也是4π;当-

请问怎么证明sinX+sin(X+Y)+sin(X+2Y)/cosX+cos(X+Y)+cos(X+2Y)=tan(X+

sinX+sin(X+Y)+sin(X+2Y)/cosX+cos(X+Y)+cos(X+2Y)=sinX+sin(X+2Y)+sin(X+Y)/cosX+cos(X+2Y)+cos(X+Y)=2sin

证明sin(1/x)在[1,正无穷)上一致连续

首先,sin(x)在[0,1]连续故一致连续.即对任意ε>0,存在δ>0,使x,y∈[0,1]满足|x-y|总有|sin(x)-sin(y)|于是对任意a,b∈[1,+∞)满足|a-b|由1/a,1/

证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+

sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/

证明cosx(cosx-cosy)+sinx(sinx-siny)=2sin(x-y)/2

题目应该是“证明cosx(cosx-cosy)+sinx(sinx-siny)=2sin²(x-y)/2”Pr:左边展开得cos²x-cosxcosy+sin²x-sin

化简sin(2x-y)*sin y+cos(2x-y)*sin y

我来给你解答,稍等再答: