证明存在酉矩阵,使得UAU为上三角

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/09 04:45:33
矩阵正定的证明问题证明对任意m×n阶实矩阵A,必存在 a 使得aIn+A'*A为正定

因A'A对称,可以对角化为Pdiag(a1,...,an)P',P是正交阵取a>|ai|,i=1,2,...,n则aIn+A'A=Pdiag(a+a1,...,a+an)P',特征值都是正数,从而正定

证明:存在一个矩阵P,使得可交换矩阵A,B同时对角化.

这里是可同时上三角化,至于对角化则不一定.证明也很简单,利用可交换矩阵有共同特征向量,并将这个特征向量扩充为一组基.考虑A,B在这组基下的矩阵.然后利用数学归纳法即可.注:当然事实上这里要求A,B可交

线性代数证明题:如果存在正整数k使得A^k=0,则称A为幂零矩阵.证明幂零矩阵的特征值为0.

设a是A的特征值.则a^k是A^k的特征值而A^k=0,零矩阵的特征值只有0所以a^k=0所以a=0所以幂零矩阵的特征值只能为0再问:这个是用了什么定理么?再答:设f(x)是一个多项式a是A的特征值,

设A为秩为m的m×n型矩阵,证明:存在秩为m的 n×m型矩阵B,使得AB=E

不知道条件中是否有n>=m,如果是n>=m则可知无论经过怎样化简,不会使得A的某一行或者某一列为0,类似方阵若A不为0,则肯定有逆矩阵,我想这里也是一样

A是正交矩阵,证明:存在一个正交矩阵B,使得B的逆乘以A乘以B=diag(Er,-Es),我记得应该是相似于

对A做实Schur分解A=Q*T*Q^T,其中Q是实正交阵,T是拟上三角阵(即对角块不超过2阶的块上三角阵)注意到T也是正交阵,每行或每列元素的平方和都是1,所以T的块上三角部分全是0,即T是拟对角阵

设A是n阶非0矩阵,如果存在一正整数k使得A^k=0,证明A不可能相似于对角矩阵.

假设A相似于对角矩阵Λ,则由相似的定义有A=P^(-1)ΛP,P可逆所以A^k=(P^(-1)ΛP)^k=P^(-1)Λ^k*P=O所以Λ^k=O即Λ=O从而A=P^(-1)ΛP=O与A是n阶非0矩阵

证明:矩阵A~B的充要条件是存在可逆矩阵P,Q使得PAQ=B

充分性:因为P、Q可逆,所以P,Q可以分解成若干个基本初等矩阵的积,所以A~B必要性:因为A~B,所以A经过若干次初等行列变换后成为B,即PAQ=B,(P、Q可逆)

设A是一个 阶可逆实矩阵.证明,存在一个正定对称矩阵S和一个正交矩阵U,使得

提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]

设A为n阶方阵,证明存在一个酉矩阵,使得U'AU为上三角矩阵

这个就是所谓的Schur分解先取A的一个单位特征向量x,取以x为第一列的酉阵Q,Q^HAQ变成分块上三角阵,归纳即可.

设a是n阶实対称矩阵,a^2=a.证明存在正交矩阵t.使得t^-1at=diag(1,1.

实对称矩阵一定可以正交相似对角化.且A的特征值必为1或者0,由此结论显然

设A为可逆n阶方阵,证明存在正交矩阵P,Q使得PAQ为对角矩阵

这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··

证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2

正定矩阵都是对称阵,所以可以正交相似对角化.即存在正交阵O使得A=O'diag{a1,a2,...,an}O,再由A正定知对角元全为正数,即a1,a2,...,an>0.令b1=√a1,b2=√a2,

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆

根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆

设A 是数域F上的n阶方阵,并且有n个特征值.证明,存在数域F上的可逆矩阵P使得P^-1AP为上三角矩阵.

我证的是T^-1AT,你再调整一下字母吧~证明:设λ1,...,λs为A的所有不同的实特征根,且可知A与某一Jordan标准型矩阵J相似,即存在可逆实矩阵P使得P^(-1)AP=J,其中,J1λi1J

设n阶矩阵A与B相似,证明:存在满秩矩阵Q和另一矩阵R,使得A=QR,B=RQ

因矩阵A与B相似,则存在满秩矩阵Q,使A=Q^(-1)BQ→QA=BQ设QA=BQ=R→A=Q^(-1)R,B=RQ^(-1)把Q^(-1)看成Q即可

设r(Am*n)=m,证明:存在秩为m的n*m矩阵B,使得AB=E

因为r(A)=m所以对任一n维列向量b,线性方程组Ax=b总是有解特别对n维基本向量ε1,ε2,...,εn,Ax=εi有解xi令B=(x1,x2,...,xn)则AB=(Ax1,Ax2,...,Ax

如何证明两个n阶上三角形矩阵的乘积仍为上三角形矩阵

证明:设A=(aij),B=(bij)是上三角n阶方阵则当i>j时aij=bij=0.记C=AB=(cij)则当i>j时cij=ai1b1j+...+aii-1bi-1j+ai,ibi,j+...+a