证明当n趋于无穷时,sinπ n=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:51:07
请问如何证明n趋于无穷时(1-1/n)^n的极限是1/e?

lim(n->∞)(1-1/n)^n=lim(n->∞){[1+1/(-n)]^(-n)}^(-1)=e^(-1)=1/elim(n->∞)(1-1/n)^(n^2)=lim(n->∞){[1+1/(

根号下(1+1/n)=1 怎么用极限存在法则证明?当n趋于无穷时

因为1<√(1+1/n)<1+1/n,不等式两边的极限均为1,所以由夹挤原理,√(1+1/n)的极限为1.

证明(2n+1)!/(2n)!当n趋于无穷时的极限为0

记A=(2n+1)!/(2n)!=(1/2)*(3/4)*...*(2n+1)/2n则00(n趋于无穷时).

如何证明n趋于无穷时,极限[1+1/(n^2)]^n=1

y=(1+1/n²)^n两边同时取自然对数得:lny=nln(1+1/n²)=[ln(1+1/n²)]/(1/n)lim【n→∞】lny=lim【n→∞】[ln(1+1/

证明n趋于无穷时,2的n次方/n!的极限是0.

n!=n*(n-1).1=(n/2*.*1/2)*2^n,n趋于无穷大是2^n/n!=1/(n/2*.1/2)就是1/n型所以极限是0.

证明n趋于无穷时(2n-1)!/(2n)!敛散性

设a_n=(2n-1)!/(2n)!,显然a_n>0.a_(n+1)/a_n=(2n+1)/(2n+2)由其有下界0,故存在极限.实际上ln((2n)!/(2n-1)!)=ln(1+1)+ln(1+1

当x趋于无穷时sin(nπ)的极限存在吗

判断函数f(x)是否有极限,即:在其定义域内看①f(x)是否单调;②f(x)是否有界.显然f(x)是有界的【-1,1】,但是f(x)在定义域内不单调,所以没有极限.

证明:当n趋于无穷时,n的阶乘除以n的n次方的极限等于0.

证明如下:(n!)/(n^n)=(n/n)*[(n-1)/n]*[(n-2)/n]*...1/nn趋于无穷时1/n趋于0..所以这个极限为0

当n趋于无穷时,lim|Xn|=0,则limXn=0.怎么证明?

|Xn|=+Xn或者-Xnlim|Xn|=0,肯定limXn=0

怎么用定义证明n^3/3^n当n趋于无穷时的极限是0?

再问:方法1第一行的那个n>=4是怎么求出来的?要解方程n^3

当n趋于无穷时,tan(π/a+1/n)^n的极限

第1题:先将(π/4+1/n)提一个π/4出来,将^n中的n变为πn/4乘以4/π.最后答案是0.第2题:记原式为f(x),先将其写成e的lnf(x)次方,用洛必达法则确定lnf(x)的极限即可求解.

(n-1/n+3)的2n次方当n趋于无穷时的极限

(1+2^n+3^n)的1/n次方?记为an,则1+2^n+3^n>3^n,所以an>31+2^n+3^n<3×3^n,所以,an<3×3^(1/n)所以,an的极限是3

证明 f(x)=3^n/n!当n趋于无穷时limf(x)=0.

你题目很怪异,f(x)中没有x,是f(n)?3^n无界,所以你证明不对根据斯特林公式,n!=[根号(2pin)][(n/e)^n][e^(t/12n)]其中01,所以f(x)又f(x)>0,[3e/n

问一道数分题吧.如何证明极限(n^n)/n!当n趋于无穷的极限?

利用这个stirling公式n!sqrt(2πe)*(n/e)^(n)(n->+inf)很容易得到

当n趋于无穷,如何用定义法证明n的开n次方等于1?

我知道,n开n次方写成e的指数形式,然后指数是(1/n)*ln(n),求极限,罗比达法则ln(n)/n罗比达=1/n当n趋近正无穷,为0所以e的0次方为1

数学极限题.当n趋于无穷时,{Sin[兀/(2^n)]}^(1/n)等于多少,

首先取ln的对数,变成ln{Sin[π/(2^n)]}^(1/n)={lnSin[π/(2^n)]}/n这是无穷比无穷型的,所以用诺必达法则,分母就直接为1,而分母=cos[π/(2^n)]*[π/2

当n趋于无穷时,n次根号(sin e)^n+1+e^n的极限

上图了,答案是e注意sin(e) < e,所以lim[n→∞] [(sin(e))/e]^n = 0(sin(e))/e是个小于1的分数