证明极限lim(x,y)~(0,0) xy^2 x^2 y^4不存在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:47:19
当x趋向于0+时,lim|x|/x=1当x趋向于0-时,lim|x|/x=-1左极限不等于右极限所以在0点的极限不存在
还是老样子,极限的定义,无限分有限+无限lim(x(n+1)-x(n))/(y(n+1)-yn)存在设lim(x(n+1)-x(n))/(y(n+1)-yn)=a对于任意e>0,存在N使得,对n>N有
任意给定ε>0,|(x^2+y^2)sin1/xy|
以直线y=kx(k≠1)趋于(0,0)则lim(x+y)/(x-y)=lim(x+kx)/(x-kx)=lim(1+k)/(1-k)极限的取值会随k的变化而变化因此,极限lim(x+y)/(x-y)当
当沿曲线y=-x+x^2趋于(00)时,极限为lim(-x^2+x^3)/x^2=-1;当沿直线y=x趋于(00)时,极限为limx^2/2x=0.故极限不存在.再问:刚问阁下是干什么地,这么强再答:
x→-1lim(x^3+x^2+x+1)=0考虑|x^3+x^2+x+1-0|≤x^2*|x+1|+|x+1|=(x^2+1)*|x+1|先限制-2再问:到这步有点不理解{min{1,ε/5}>0,当
任给正数ε,只需取δ=ε,当0<|x-0|<δ,恒有|xsin(1/x)-0|=|xsin(1/x)|≤|x|<ε.所以lim(x→0)xsin(1/x)=0
对于|(2x+1)/(x-1)+1|=|(3x)/(x-1)|=3*|x-0|/|x-1|限制x的范围:-1/2
因为lnx在点x=1处连续,所以limlnx=0(当x趋于1)=ln1=0再问:还没有学到连续只是最基本的再答:任给正数ε,要使│lnx│
这是x->oo时的极限证:任给(艾普西龙)E>0,(符号不好打,用E代了)要使|sinx/x-0|
直接带入就行了……函数f(x,y)在(2,1)处是连续的,所以极限就等于该处的函数值
lim(x^2-5y^2)/(x^2+3y^2)=lim(x^2+3y^2)/(x^2+3y^2)-8y^2/(x^2+3y^2)=1-lim8/[(x/y)^2+3]因为不知道x、y的大小.所以li
(1)令(x,y)沿y=kx趋近于(0,0),则Lim((x,y)→(0,0))x+y/x-y=Lim((x,y)→(0,0))x+kx/x-kx=kk取不同值则极限也不同,所以极限不存在.(2)极限
证明函数f(x,y)=(x+y)/(x-y)在点(0,0)处的二重极限不存在.当点(x,y)沿着直线y=kx(k为不等于1的任意实数)趋于(0,0)时,limf(x,y)=lim(x+kx)/(x-k
令y=x^3-x^2,带入原式,则当x,y趋于0时,原式趋于-1,再令y=x^2,带入原式,则当x,y趋于0时,原式趋于0,所以原式的极限不存在
令u=xy,则原式=lim(√(u+1)-1)/u=lim((u+1)-1)/[u·(√(u+1)+1)]=limu/[u·(√(u+1)+1)]=lim1/(√(u+1)+1)=1/2
不作代换也可以
因为sinx再问:你好,谢谢你的答案。我想再问下,这里是不是因为tanx的极限值为无穷所以,不可得到当x趋近于0时,sinx为1呢?感谢~再答:当x趋近为0时,sinx=0,cosx=1
是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对
该极限不存在,从X轴,Y轴,Y=X,Y=-X逼近原点时得到的结果不同(两个就够了)