O为矩形ABCD对角线中点,DE平行于AC,CE平行于BD,求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:38:04
矩形的对角线相交于一点O,根据矩形特点,有OA=OB=OC=OD,那么,根据圆形的特征,四条线段共点于O,这样四条线段均为以O为圆心,此线段长为半径的圆四条半径,故A、B、C、D四点共圆.
1.以O为原点,OA,OD,OB为x,y,z轴建立坐标系,则E(2,2,0),F(-2,0,2)所以向量OE=(2,2,0),OF=(-2,0,2)cos=OE*OF/(|OE||OF|)=(-4+0
选B详∵S-ABCD=AB×BC=20∴S-AOC₁B=AB×BC/2=10(同底,高依次减少为一半)同理S-AO₁C₂B=S-AOC₁B/2=5S-A
5*(1/2)^n后面的每一个平行四边形都与第一个矩形ABCD同底不同高,而第n个平行四边形的高是矩形ABCD的(1/2)^n至于证明,可以用数学归纳法.n=1时,显然成立.假设n=k时成立,则n=k
e是ao中点,H是od中点可得eh是三角形aod的中位线同理可得fh是三角形cod的中位线可得三角形efh相似于acd则角ehf是直角同样由相似三角形可得到eg平行hfeh平行gf则ehfg是矩形
1、因为:ABCE为矩形,所以AD=BC,又AC、BD分别为矩形的对角线,所以角DAE=角CBF,且AO=BO.E、F分别是OA、OB的中点,所以AE=BF,综上所述三角形ADE全等于三角形BCF.2
证明:∵E是OA的中点,G是OC的中点,∴OE=AO,OG=CO.∵四边形ABCD是矩形,∴AO=CO,∴OE=OG.同理可证OF=OH.∴四边形EFGH是平行四边形.∵OE=AO,OG=OC,∴EG
∵ABCD是平行四边形∴OB=OD=1/2BD=6BC+CD=36÷2=18∵E是CD的中点∴OE是△BCD的中位线∴OE=1/2BC∵DE=1/2CD∴OE+DE=1/2CD+1/2BC=1/2(B
1.证明:∵ABCD是矩形,对角线相互平分∴OA=OC,OB=ODRT△ABC中,∵OA=OC=1/2AC∴OB=1/2AC.OA=OB=OC.∵OB=OD∴OA=OB=OC=OD因此这四点都在以O为
这题确实有点难.(1)较容易,就是两角相等证相似(一直径所对直角一等弧所对圆周角).(2)就稍难些了.在△BCD中用勾股定理求出BD的长,再证△ABE相似于△DBC,得AB:BD=BE:BC,再比例变
证明:连接OB,∵EF⊥AC,∴△AOE是直角三角形∴OG=AG=GE,∴∠BAC=∠AOG=30°,∠AEO=60°,∠GOE=∠AOE-∠AOG=60°,∴△OEG是正三角形,∴OG=OE=GE,
证明:∵ABCD是矩形∴OA=OB=OC=OD∵E、F、G、H分别是OA、OB、OC、OD的中点,∴OE=OF=OG=OH∴四边形RFGH是矩形(对角线相等且平分的四边形是矩形)
连接DNCOD=60°OC=OD△COD是等边三角形N是中点DN⊥AC在△ADN中AM=mDMN=1/2AD=1/2BC(斜边上中线等于斜边的一半)
(1)∵矩形ABCD的边AD=3,对角线长为5∴AB=√AC²-AD²=4∵点C与原点O重合∴A(4,3)(2)∵矩形ABCD从图1的位置开始沿x轴的正方向移动,每秒移动1个单位∴
∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=12AC=5,同理EF=5,根据矩形的对角线相等,连接BD,得到:EH=FG=5,∴四边形EFGH的周长为20.故答案是:20.
(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAE=∠BCK,∵BK⊥AC,DH∥KB,∴∠BKC=∠AED=90°,∴△BKC≌△ADE,∴AE=CK;(2)∵AB=a,AD=
已知矩形ABCD对角线长度为x,两个对角线夹角为角a.求矩形面积S?S=x^2*SIN(a)
作OF⊥AB于F作OG⊥BC于FG因为tan角ACB=AB/BC=√3/3所以角ACB=30度设AF=x则AO=2X,OF=√3X所以OG=2-x,GE=√3-√3X=√3(1-X)由OE=OF得:(
(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAE=∠BCK,∵BK⊥AC,DH∥KB,∴∠BKC=∠AED=90°,∴△BKC≌△ADE,∴AE=CK;(2)∵AB=a,AD=
选D.根号3∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2BC)2=32+BC2,∴BC=根号3故选D.