o是三角形abc的外心,角boc等于80度,角bac为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:38:54
当O在△ABC的内部,则∠A=40°当O在△ABC的外部,则∠A=140°
假设不是直角则PO不垂直于面ABC,则作P在面上的射影点Q,根据∠AOP=∠BOP=∠COP可以证明∠AOQ=∠BOQ=∠COQ.但这是不可能的.所以三个角都是直角.
证明:连接BI,∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI(三角形的外角等于与它不相邻的两个内角和),∠IBE=∠
∠BOC=180-(180-∠A)÷2=180-(180-60)÷2=180-60=120度
因为O是三角形ABC的外心所以OA=OB=OC所以∠OAC=∠OCA,∠OAB=∠OBA,∠OBC=∠OCB因为∠BOC=140°所以∠OBC=∠OCB=20°又因为∠OAC+∠OCA+∠OAB+∠O
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
由余弦定理得cosC=23/28,AO与BO是三角形外接圆的半径,设为R,根据正弦定理得:R=c/(2sinC).∠AOB是圆心角,是相应圆周角∠C的两倍.向量AO*BO=R*R*cos∠AOB=R^
已知点O为三角形ABC的外心,角A等于60度,则角BOC的度数是120°(圆心角是圆周角的2倍)
点o是三角形abc的外心,则oa=ob=oc,∠oab=∠oba,∠oac=∠oca,∠oab+∠oac=∠a=72度,∠boc=∠oab+∠oba+∠oac+∠oca=144度.
过O作ON垂直于AC与N,因角AOC=2角B,故角AON=角B,角OAC=90-角AON=90-角B,角BAC=180-B-C,角BAO=BAC-OAC=180-B-C-(90-B)=90-C,由正弦
因为O是三角形ABC的外心所以OA=OB=OC因为PA=PB=PC,PO=PO=PO所以△PAO≌△PBO≌△PCO所以∠POA=∠POB=∠POC=90°所以PO垂直平面ABC
过O作OE⊥BC交BC于E,再过A作AF⊥BC交BC于F.∵OE⊥BC,AF⊥BC,∴OE∥AF,∴△OEL∽△AFL,∴OL∶AL=OE∶AF.△OBC与△ABC是同底不等高的三角形,∴OE∶AF=
因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=
解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=
因为∠BIC=90+1/2∠A,∠BOC=2∠A所以90+1/2∠A=2∠A所以180=3∠A所以∠A=60度
设A,B,C坐标为(x1,y1),(x2,y2),(x3,y3)点O坐标(x,y)OA+OB+OC=0x1-x+x2-x+x3-x=0y1-y+y2-y+y3-y=0x=(x1+x2+x3)/3y=(
因为 O是三角形ABC的外心, 所以 角BOC是三角形ABC的外接圆的圆心角, 角BAC是三角形ABC的外接圆的圆周角, 因为 角ABC=60度,角ACB=70度, 所以 角BAC=50
BO\2009=10OA\2009+1999OC\2009BO\2009为BO所在直线交AC与D点,既OD所以面积之比为BO比OD为2010