PA,PB,DE分别切圆o与点A,B,C,若PO=13,圆O的半径为5cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 12:36:31
因为PA、PB、DE分别切圆O于A、B、C所以 PA=PB=10cm AD=CD BE=CE所以 C△PDE=PD+PE+DE=PD+PE+(CD+CE)=(P
证法1:AB·PB-AC·PC=AB·PC-AC·PB(AB+AC)PB=(AB+AC)PCPB=PC;∵PA,PB为切线∴PA=PB=PC;∵AP⊥PC∴∠PAC=∠PCA=45°∠PAB=∠PBA
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
图再问:再问:只用解决第二问再答:70度再问:答案正确再问:步骤再答:∵PB,PA与⊙O相切∴∠DPC=∠CPE=20°∵OBP=∠OAP=90°∴∠AOP=∠BOP=70°再答:∵DE与⊙O相切再答
*引理:切线长定理:过定圆外一点向定圆引两条切线,则这两条切线长相等.*引理的证明:运用三角形全等证明,证法略.根据切线长定理,我们有:DC=DA,DE=BE;那么,由以下两组三角形全等:三角形OAD
这道题是我在读初中的时候做过,当时做了一个中午,一直到下午上课前才找到灵感.具体怎么做我不写步骤了,我给出这道题的关键和我的思考.因为题目中给出的信息只有PO与半径r,并未给出DE与圆相切点C的具体位
根据圆外一点至圆作二切线段相等的性质,QA=QE,DE=DB,∴△PQD周长=PQ+QD+PD=PQ+QA+DB+PD=PA+PB=2PA=10cm.
分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,
EA=EC,FB=FC,PA=PB=2C△=PE+PF+EF=PE+PF+EC+FC=PE+PF+EA+FB=PA+PB=4
没有图的话很难做啊那么就按○O为△PDE内切圆做S三角形=16*r*1\2=8r其余无法计算
应该是10,链接OA,OB,链接AC,BC,先证明AD=DC,BE=EC;证明如下:oA垂直与Ap;OC垂直与DE;则角OAD=角OCD,而又因为OA=OC则角OAC=角OCD,所以DAE=角DCA,
∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,∴AE=CE,FB=CF,PA=PB=2,∴△PEF的周长=PE+EF+PF=PA+PB=4.故填空答案
作辅助线DEAB=14,C为半圆的三等分点,则PB=7√3,AP=7√7AD/AP=AE/AB,得出AE/AD=2/√7又角ADB=角AED=90°所以△ADE∽△ABD,则AE/AD=AD/AB=2
△PDE的周长为24因为PA、PB与圆相切所以PB=PA=12所以PA+PB=24又因为DA、DC与圆相切所以DA=DC同理可得EC=EB所以解得周长为24
因为PA、PB、DE分别切圆O于A、B、C所以PA=PB=10cmAD=CDBE=CE所以C△PDE=PD+PE+DE=PD+PE+(CD+CE)=(PD+AD)+(PE+BE)=PA+PB
∵三角形PDE的周长=PE+EC+PD+DC=PA+PB=16CM∵EB=EC,∴PE+EC=PB=8又∵DC=DB,∴PD+DC=PA=8∴在Rt△PAO中由勾股定理的R=AO=6CM
设DC切圆O于点E,则DA=DE,CB=CEPA=PD+DA=PA+DE,PB=PC+CB=PC+CE△PCD周长为:PC+PD+CE=PD+DE+PC+CE=PA+PB=14再问:为什么da=de,