过B和侧棱SA,SC的中点E,F作一截面,若这个截面与侧面SAC垂直,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:01:41
四边形ABCD是平行四边形,直线SC垂直平面ABCD,E是SA的中点,求证:平面EDB垂直平面ABCD

连AC BD交于O,则O为AC中点又E是SA的中点所以OE为中位线因为SC垂直平面ABCD所以OE⊥平面ABCD又OE在平面EDB内所以平面EDB垂直平面ABCD

在四面体S-ABC中,各个侧面都是棱长为a的正三角形,E、F分别是SC、AB的中点,则异面直线SA与EF所成角?

表达很困难啊.做辅助线,连接SF.在直角三角形SEF中,SF=(2分之根号3)a,SE=2分之a,可以得到EF长度为(2分之根号2)a.再选SB中点G,连接FG,EG,可得出EFG为等腰直角三角形,最

已知:点S是正三角形ABC所在平面外一点,D,E,F分别是SA,SB,SC的中点.求证:平面DEF//平面ABC

证明:因为D,E分别是SA,SB的中点,所以DE//AB(三角形中位线定理),同理DF//AC,所以平面DEF//平面ABC.

正三棱锥S-ABC的侧棱与底面边长相等,如果E,F分别是SB SC的中点,那么异面直线EF与SA所成的角

正三棱锥S-ABC的侧棱与底面边长相等,则该正三棱锥S-ABC是正四面体,SA⊥BC,∵EF//BC,∴EF⊥SA,即异面直线EF与SA所成的角为90°.再问:正三棱锥S-ABC的侧棱与底面边长相等,

正三棱锥S-ABC的侧棱与底面边长相等,若E,F分别是SC,AB的中点,则异面直线EF与SA所成的角等于多少度?

设BC的中点为G连接AG,SG因为SB=SC,G为BC的中点.所以SG垂直于BC.同理AG垂直于BC.所以BC垂直于平面ASG.从而有BC垂直于AG.

如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点

证明:(Ⅰ)连接AC、AF、BF、EF、∵SA⊥平面ABCD∴AF为Rt△SAC斜边SC上的中线∴AF=12SC(2分)又∵ABCD是正方形∴CB⊥AB而由SA⊥平面ABCD,得CB⊥SA∴CB⊥平面

四棱锥S-ABCD的底面是矩形、SA垂直底面ABCD、E F 分别是SD SC的中点

提示:(1)矩形所以CD垂直于ADSA垂直于平面ABCD所以SA垂直于CD所以CD垂直于ADSA即垂直于面SAD因为EF为中点所以EF//CD所以EF垂直于面SAD90度(2)30度(先证明角CDS为

四面体S—ABC中,各侧面都是边长为a的正三角形,E,F分别是SC和AB的中点,则异面直线EF与SA所成的角等于?

45°具体看图,明白就采纳再问:再答:看图,不明白再追问,直到你彻底明白为止

如图,三棱锥S-ABC中,M,N,E,F分别为棱SA,SC,AB,BC的中点,试判断直线MN与直线EF是否平行

平行证明∵M是SA中点,N是SC中点∴MN//AC∵E是AB中点,F是BC中点∴EF//AC∴MN//EF很高兴为您解答,祝你学习进步!有不明白的可以追问!如果您认可我的回答,请点击“采纳为满意答案”

如下图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,E,F分别是SD,SC的中点.求证:(1)BC⊥平面SAB

<1>因为ABCD为矩形,所以BC垂直于AB因为SA垂直于平面ABCD,所以SA垂直于BCSA交AB=A所以BC垂直于平面SAB(2)CD⊥ADSA⊥平面ABCD所以SA⊥CDAD∩SA=A所以CD⊥

在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点,求证

求证:EF⊥CD①  设O是ABCD中心,则FO∥SA﹙⊿SAC中位线﹚ ∴FO⊥CD  又EO⊥CD    

如图;四棱锥S-ABCD的底面ABCD为正方形,SA垂直平面ABCD,E是SC的中点,求证;平面EBD垂直平面SAC(请

连接AC,BD交于0,连EO在三角形SAC中,EO平行于SA,所以EO垂直平面ABCD所以EO垂直BD又底面正方形中AC垂直BD,且EO交AC于O,所以BD垂直面SAC又BD属于面EBD所以面EBD垂

三棱锥S-ABC中,SA⊥底面ABC,SA=AB,AF⊥SC,E为SB的中点,SB=2a,SC⊥BC,求三棱锥V S-A

因为SA⊥平面ABC,BC属于平面ABC,所以SA⊥BC.因为已知SC⊥BC,所以BC⊥平面ASC,因为AF属于平面ASC,所以AF⊥BC,因为SC⊥BC,所以AF⊥平面SBC,因为EF属于平面SBC

空间四边形SABC中,SA=SB=SC=AB=AC=BC=a,E、F分别是SC和AB的中点,则异面直线EF与SA所构成的

取AC的中点H联结HF、HE则HF=HE=SA/2=a/2,HF∥BC,HE∥SA因为SA⊥BC(取BC中点Q,AB=AC,所以AQ⊥BC,SQ⊥BC,所以BC⊥平面SAQ,所以SA⊥BC)HE⊥HF

空间四边形SABCD中,SA=SB=SC=AB=AC=BC=a.E 、F分别是SC和AB的中点.则异面直线EF与SA所成

取AC的中点H联结HF、HE则HF=HE=SA/2=a/2,HF∥BC,HE∥SA因为SA⊥BC(取BC中点Q,AB=AC,所以AQ⊥BC,SQ⊥BC,所以BC⊥平面SAQ,所以SA⊥BC)HE⊥HF

已知正三棱锥S-ABC的侧棱长与底面边长相等,E、F分别为SC、AB的中点,求异面直线EF与SA所成角

因为已经证明了ED‖SA和DF‖BC,而在正四面体S-ABC中SA⊥BC,所以ED⊥DF.

在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E、F分别为AB、CD的中点.

(1)证明:由SA=SB,E为AB中点得SE⊥AB.由SC=SD,F为CD中点得SF⊥DC.又AB∥DC,∴AB⊥SF.又SF∩SE=S,∴AB⊥平面SEF.又∵AB⊂平面ABCD,∴平面SEF⊥平面

正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点,求证:直线EG平行平面B

连接SB,在三角形SBC中,由中位线定理,得EG//SB.故推出EG//平面BDD1B1(若平面外的一直线平行于平面上的一条直线,则该直线就平行于这平面)再连接:FG,由于同样的理由,FG//DS.由