过点f1的直线交椭圆E于AB两点,且向量BF1=向量F1A,求直线BF1的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:54:41
已知F1F2是椭圆3X²+4Y²=12的两个焦点,过点F1作倾斜角为45°的直线交椭圆于AB两点,求

椭圆方程:x²/4+y²/3=1a²=4,b²=3,c²=a²-b²=4-3=1F1(-1,0)F2(1,0)直线AB的斜率=ta

已知椭圆E的左右焦点分别为F1,F2,过F1作斜率为2的直线,交椭圆E于P点,

直线为y=2x+2c设其与y轴交点为Q则利三角形F1OQ与三角形F1PF2相似又PF1+PF2=2a再在直角三角形PF1F2中用勾股定理得出离心率(根5)/3

由F1F2是椭圆两焦点,过F1且与椭圆长轴垂直的直线交椭圆于AB两点,若角ABF2是等腰直角三角形,离心率?

简而言之,因为三角形AF1F2也是等腰直角三角形,AF1、F1F2为腰椭圆定义F1F2=2c设椭圆方程x^2/a^2+y^2/b^2=1F1(-c,0)F2(c,0)椭圆定义得AF1+AF2=2a,F

已知椭圆x^2/4+y^2=1,过左焦点F1的直线交椭圆于A、B点,求AB中点N的轨迹方程

设A(x1,y1)、B(x2,y2),N(x,y),则x=(x1+x2)/2,y=(y1+y2)/2.(1)x1^2/4+y1^2=1x2^2/4+y2^2=1相减得到:(x1^2-x2^2)/4+(

已知椭圆的两个焦点F1(-1,0),F2(1,0),过F1的直线l交椭圆于点M,N,三角形MF2N的周长为8

由题可知:F1F2=2,PF2=1/2PQ=1.5,连接PF1,则PF1=2.5PF1+PF2=2.5+1.5=4所以长轴a=4/2=2b^2=a^2-c^2=4-1=3椭圆的方程:x^2/4+y^2

已知椭圆两焦点为F1,F2,a=3/2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为

∵AB=AF1+F1B∴AB+BF2+F2A=(AF1+F1B)+BF2+F2A=(AF1+AF2)+(BF1+BF2)又由椭圆的定义可知:AF1+AF2=BF1+BF2=2a∴周长为AB+BF2+F

已知中心在原点,对称轴为坐标轴的椭圆左焦点F1(-1,0)一个顶点坐标(0,1)直线l过椭圆的右焦点F2交椭圆于AB两

题没有叙述完,就已知可知c=1,b=1,于是a=sqrt(b^2+c^2)=根号2,于是团员的方程为X^2/2+y^2=1,右焦点F2的坐标是(1,0).

已知F1、F2是椭圆X²/16+Y²/9=1的两焦点,过点F2的直线交椭圆于点A,B,若|AB|=5

选A设|AF2|=m,|BF2|=n,则|AF1|=2a-m=8-m,故|AF1|—|BF2|=8-m-n=8-(m+n)=8-5=3

椭圆通径问题已知椭圆,过左焦点F1有一条垂直于长轴的直线,直线交椭圆于AB两点,三角形ABF2是等边三角形,求椭圆离心率

结果是一样的,你马虎了吧!半通径AF1=b^2/a,AF2=2a-b^2/a=(a^2+c^2)/asin30°=AF1/AF2=(b^2/a)/[(a^2+c^2)/a]=(a^2-c^2)/(a^

已知椭圆Cx^2/9+y^2/8=1的左右两个焦点分别为F1F2,过F1作一直线交椭圆C于AB两点

1. 面积最大值为16/3.a=√9=3,b=√8=2√2,c=√(a²-b²)=1,故|F1F2|=2c=2.过F1的直线方程为:x+1=ay(这么设是为了顾及a=0即

设椭圆9分之x平方+4分之y平方=1的焦点为F1,F2,直线L过点F1且与椭圆交于AB两点,则△ABF2的周长为多少?

根据定义点A到F1,F2距离和为定值2a,AF1+AF2=2a=6,同理,BF1+BF2=6所以三角形ABF2的周长为12

已知F1 F2是椭圆x^2/4+y^2/3=1的两个焦点 过点F1的直线交椭圆于点A,B 若AB的绝对值=24/7 则直

斜率k,c²=a²-b²=4-3=1,c=1F₁(-1,0)AB:y=k(x+1)代入椭圆并整理:(4k²+3)x²+8k²x+

已知椭圆E的左右焦点分别为F1,F2,过F1作斜率为2的直线,叫椭圆E于p点,若三角形

角PF1F2的正余弦值可以计算出来:因为正切是2,所以余弦的平方是1/5,正弦平方是4/5.于是(根5/5+2根5/5)c=a,得到e=根5/3

过椭圆x^2/5+y^2=1的左焦点F1的倾斜角为45°的直线L交椭圆于AB两点的长度

椭圆x^2/5+y^2=1的左焦点F1(-2,0)倾斜角为45斜率为1所以直线L的方程为y=x+2带入方程得x²+5x²+20x+20=56x²+20x+15=0x1+x

已知F1、F2是椭圆x216+y29=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1

∵直线交椭圆于点A、B,∴由椭圆的定义可知:|AF1|+|BF1|+|AB|=4a,∴|AF1|+|BF1|=16-5=11,故选B

F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB

由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故选B

已知F1 F2是椭圆X2/16 Y2/9=1 两焦点过F2的直线交椭圆于AB AB=5求AF1-B

把|AB|用x1,x2表示出来,它们的关系,带入后所求式,要结合椭圆定义和性质